
1

 20PCS3DE3B

Distributed Operating System

1. Fundamentals

Evolution of Distributed Computing Systems, System models,

issues in design of Distributed Systems, Distributedcomputing

environment, web based distributed model, computer networks

related to distributed systems and web based protocols.

2. Message Passing

Inter process Communication, Desirable Features of Good

Message-Passing Systems, Issues in IPC by Message,

Synchronization, Buffering, Multidatagram Messages, Encoding

and Decoding of Message Data, Process Addressing, Failure

Handling, Group Communication.

3. Remote Procedure Calls

The RPC Model, Transparency of RPC, Implementing RPC

Mechanism, Stub Generation, RPC Messages, Marshaling

Arguments and Results, Server Management, Communication

Protocols for RPCs, Complicated RPCs, Client-Server Binding,

Exception Handling, Security, Some Special Types of RPCs,

Lightweight RPC, Optimization for Better Performance.

4. Distributed Shared Memory

Design and Implementation issues of DSM, Granularity,

Structure of Shared memory Space, Consistency Models,

replacement Strategy, Thrashing, Other Approaches to DSM,

Advantages of DSM.

5. Synchronization

Clock Synchronization, Event Ordering, Mutual Exclusion,

Election Algorithms.

6. Resource and Process Management

Desirable Features of a good global scheduling algorithm,

Task assignment approach, Load Balancing approach, Load

Sharing Approach, Process Migration, Threads, Processor

allocation, Real time distributed Systems.

2

7. Distributed File Systems

Desirable Features of a good Distributed File Systems, File

Models, File Accessing Models, File-shearing Semantics,

Filecaching Schemes, File Replication, Fault Tolerance, Design

Principles, Sun’s network file system, Andrews file system,

comparison of NFS and AFS.

8. Naming

Desirable Features of a Good Naming System, Fundamental

Terminologies and Concepts, Systems-Oriented Names, Name

caches, Naming & security, DCE directory services.

9. Case Studies

Mach & Chorus (Keep case studies as tutorial)

Term work/ Practical: Each candidate will submit assignments based

on the above syllabus along with the flow chart and program listing will

be submitted with the internal test paper.

References:

1. Distributed OS by Pradeep K. Sinha (PHI)

2. Tanenbaum S.: Distributed Operating Systems,

 Pearson Education

3. Tanenbaum S. Maarten V.S.: Distributed Systems Principles and

Paradigms, (Pearson Education)

4. George Coulouris, Jean Dollimore. Tim Kindberg: Distributed

Systems concepts and design.



1

FUNDAMENTALS

Unit Structure:

1.1 What is a Distributed Computing System

1.2 Evolution of Distributed Computing System

3

1.3 Distributed Computing System Models

1.1 WHAT IS A DISTRIBUTED COMPUTING SYSTEM

Over the past two decades, advancements in microelectronic

technology have resulted in the availability of fast, inexpensive

processors, and advancements in communication technology have

resulted in the availability of cost effective and highly efficient

computer networks. The net result of the advancements in these two

technologies is that the price performance ratio has now changed to

favor the use of interconnected, multiple processors in place of a

single, high-speed processor.

Computer architectures consisting of

 interconnected, multiple processors are basically of two types:

1. Tightly coupled systems: In these systems, there is a single

system wide primary memory (address space) that is shared by all

the processors [Fig. 1.1(a)]. If any processor writes, for example,

the value 100 to the memory location x, any other processor

subsequently reading from location x will get the value 100.

Therefore, in these systems, any communication between the

processors usually takes place through the shared memory.

2. Loosely coupled systems: In these systems, the processors do

not share memory, and each processor has its own local memory

[Fig. 1.1(b)]. If a processor writes the value 100 to the memory

location x, this write operation will only change the contents of its

local memory and will not affect the contents of the memory. In

these systems, all physical communication between the

processors is done by passing messages across the network that

interconnects the processors.

Interconnection Hardware

Systemwide

shared memory
CPU CPU CPU CPU

(a)

4

Fig. 1.1 Difference between tightly coupled and loosely

coupled multiprocessor systems (a) a tightly coupled

multiprocessor system; (b) a loosely coupled multiprocessor

system

• Tightly coupled systems are referred to as parallel processing

systems, and loosely coupled systems are referred to as

distributed computing systems, or simply distributed systems.

• In contrast to the tightly coupled systems, the processor of

distributed computing systems can be located far from each

other to cover a wider geographical area. Furthermore, in

tightly coupled systems, the number of processors that can be

usefully deployed is usually small and limited by the bandwidth

of the shared memory. This is not the case with distributed

computing systems that are more freely expandable and can

have an almost unlimited number of processors.

• In short, a distributed computing system is basically a collection

of processors interconnected by a communication network in

which each processor has its own local memory and other

peripherals, and the communication between any two

processors of the system takes place by message passing over

the communication network.

• For a particular processor, its own resources are local,

whereas the other processors and their resources are remote.

Together, a processor and its resources are usually referred to

as a node or site or machine of the distributed computing

system.

1.2 EVOLUTION OF DISTRIBUTED

 COMPUTING SYSTEM

• Computer systems are undergoing a revolution. From 1945,

when the modem Computer era began, until about 1985,

Localmemory

CPU

Communicationnetwork

(b)

Localmemory

CPU

Localmemory

CPU

Localmemory

CPU

5

computers were large and expensive. Even minicomputers

cost at least tens of thousands of dollars each. As a result,

most organizations had only a handful of computers, and for

lack of a way to connect them, these operated independently

from one another. Starting around the mid-198 0s, however,

two advances in technology began to change that situation.

• The first was the development of powerful microprocessors.

Initially, these were 8-bit machines, but soon 16-, 32-, and 64-

bit CPUs became common. Many of these had the computing

power of a mainframe (i.e., large) computer, but for a fraction

of the price. The amount of improvement that has occurred in

computer technology in the past half century is truly staggering

and totally unprecedented in other industries. From a machine

that cost 10 million dollars and executed 1 instruction per

second. We have come to machines that cost 1000 dollars and

are able to execute 1 billion instructions per second, a

price/performance gain of 1013.

• The second development was the invention of high-speed

computer networks. Local-area networks or LANs allow

hundreds of machines within a building to be connected in such

a way that small amounts of information can be transferred

between machines in a few microseconds or so. Larger

amounts of data can be Distributed Computing become

popular with the difficulties of centralized processing in

mainframe use.

• With mainframe software architectures all components are

within a central host computer. Users interact with the host

through a terminal that captures keystrokes and sends that

information to the host. In the last decade however,

mainframes have found a new use as a server in distributed

client/server architectures (Edelstein 1994). The original PC

networks (which have largely superseded mainframes) were

based on file sharing architectures, where the server transfers

files from a shared location to a desktop environment.

• The requested user job is then run (including logic and data) in

the desktop environment. File sharing architectures work well

if shared usage is low, update contention is low, and the

volume of data to be transferred is low. In the 1990s, PC LAN

(local area network) computing changed because the capacity

of the file sharing was strained as the number of online users

grew and graphical user interfaces (GUIs) became popular

(making mainframe and terminal displays appear out of date).

• The next major step in distributed computing came with

separation of software architecture into 2 or 3 tiers. With two

6

tier client-server architectures, the GUI is usually located in the

user's desktop environment and the database management

services are usually in a server that is a more powerful

machine that services many clients. Processing management

is split between the user system interface environment and the

database management server environment. The two tier

client/server architecture is a good solution for locally

distributed computing when work groups are defined as a

dozen to 100 people interacting on a LAN simultaneously.

However, when the number of users exceeds 100,

performance begins to deteriorate and the architecture is also

difficult to scale. The three tier architecture (also referred to as

the multi-tier architecture) emerged to overcome the limitations

of the two tier architecture. In the three tier architecture, a

middle tier was added between the user system interface client

environment and the database management server

environment.

• There are a variety of ways of implementing this middle tier,

such as transaction processing monitors, messaging

middleware, or application servers. The middle tier can

perform queuing, application execution, and database queries.

For example, if the middle tier provides queuing, the client can

deliver its request to the middle layer and disengage because

the middle tier will access the data and return the answer to

the client. In addition the middle layer adds scheduling and

prioritization for work in progress. The three-tier client/server

architecture has been shown to improve performance for

groups with a large number of users (in the thousands) and

improves flexibility when compared to the two tier approach.

• Whilst three tier architectures proved successful at separating

the logical design of systems, the complexity of collaborating

interfaces was still relatively difficult due to technical

dependencies between interconnecting processes. Standards

for Remote Procedure Calls (RPC) were then used as an

attempt to standardise interaction between processes.

• As an interface for software to use it is a set of rules for

marshalling and un-marshalling parameters and results, a set

of rules for encoding and decoding information transmitted

between two processes; a few primitive operations to invoke

an individual call, to return its results, and to cancel it; provides

provision in the operating system and process structure to

maintain and reference state that is shared by the participating

processes. RPC requires a communications infrastructure to

set up the path between the processes and provide a

framework for naming and addressing.

7

• There are two models that provide the framework for using the

tools. These are known as the computational model and the

interaction model. The computational model describes how a

program executes a procedure call when the procedure

resides in a different process. The interaction model describes

the activities that take place as the call progresses. A

marshalling component and a encoding component are

brought together by an Interface Definition Language (IDL). An

IDL program defines the signatures of RPC operations. The

signature is the name of the operation, its input and output

parameters, the results it returns and the exceptions it may be

asked to handle. RPC has a definite model of a flow of control

that passes from a calling process to a called process. The

calling process is suspended while the call is in progress and

is resumed when the procedure terminates. The procedure

may, itself, call other procedures. These can be located

anywhere in the systems participating in the application.

1.3 DISTRIBUTED COMPUTING SYSTEM MODELS

Various models are used for building distributed computing

systems. These models can be broadly classified into five categories

– minicomputer, workstation, workstation-server, processor pool, and

hybrid. They are briefly described below.
1.3.1 Minicomputer Model :

• The minicomputer model is a simple extension of the

centralized time sharing system as shown in Figure 1.2, a

distributed computing system based on this model consists of

a few minicomputers (they may be large supercomputers as

well) interconnected by a communication network. Each

minicomputer usually has multiple users simultaneously

logged on to it. For this, several interactive terminals are

connected to each minicomputer. Each user is logged on to

one specific minicomputer, with remote access to other

minicomputers. The network allows a user to access remote

resources that are available on some machine other than the

one on to which the user is currently logged.

• The minicomputer model may be used when resource sharing

(Such as sharing of information databases of different types,

with each type of database located on a different machine) with

remote users is desired.

• The early ARPAnet is an example of a distributed computing

system based on the minicomputer model.

8

Fig. 1.2 : A distributed computing system based on the

minicomputer model

1.3.2 Workstation Model :

• As shown in Fig. 1.3, a distributed computing system based on

the workstation model consists of several workstations

interconnected by a communication network. A company’s

office or a university department may have several

workstations scattered throughout a building or campus, each

workstation equipped with its own disk and serving as a single-

user computer.

• It has been often found that in such an environment, at any one

time (especially at night), a significant proportion of the

workstations are idle (not being used), resulting in the waste of

large amounts of CPU time. Therefore, the idea of the

workstation model is to interconnect all these workstations by

a high speed LAN so that idle workstations may be used to

process jobs of users who are logged onto other workstations

and do not have sufficient processing power at their own

workstations to get their jobs processed efficiently.

• In this model, a user logs onto one of the workstations called

his or her “home” workstation and submits jobs for execution.

When the system finds that the user’s workstation does not

have sufficient processing power for executing the processes

of the submitted jobs efficiently, it transfers one or more of the

process from the user’s workstation to some other workstation

that is currently idle and gets the process executed there, and

Mini-
Computer

Communication
network

Mini-
Computer

Mini-
Computer

Mini-
Computer

Terminals

9

finally the result of execution is returned to the user’s

workstation.

Fig. 1.3 : A distributed computing system based on the

workstation model

This model is not so simple to implement as it might appear at

first sight because several issues must be resolved. These issues are

[Tanenbaum 1995] as follows :

1. How does the system find an idle workstation?

2. How is a process transferred from one workstation to get it

executed on another workstation?

3. What happens to a remote process if a user logs onto a

workstation that was idle until now and was being used to execute

a process of another workstation?

Three commonly used approaches for handling the third issue

are as follows:

1. The first approach is to allow the remote process share the

resources of the workstation along with its own logged-on user’s

processes. This method is easy to implement, but it defeats the

main idea of workstations serving as personal computers, because

if remote processes are allowed to execute simultaneously with

the logged on user’s own processes, the logged-on user does not

get his of her guaranteed response.

2. The second approach is to kill the remote process. The main

drawbacks of this method are that all processing done for the

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Communication
network

10

remote process gets lost and the file system may be left in an

inconsistent state, making this method unattractive.

3. The third approach is to migrate the remote process back to its

home workstation, so that its execution can be continued there.

This method is difficult to implement because it requires the

system to support preemptive process migration facility.

For a number of reasons, such as higher reliability and better

scalability, multiple servers are often used for managing the resources

of a particular type in a distributed computing system. For example,

there may be multiple file servers, each running on a separate

minicomputer and cooperating via the network, for managing the files

of all the users in the system. Due to this reason, a distinction is often

made between the services that are provided to clients and the

servers that provide them. That is, a service is an abstract entity that

is provided by one or more servers. For example, one or more file

servers may be used in a distributed computing system to provide file

service to the users.

In this model, a user logs onto a workstation called his or her

home workstation. Normal computation activities required by the

user’s processes are preformed at the user’s home workstation, but

requests for services provided by special servers (such as a file server

or a database server) are sent to a server providing that type of service

that performs the user’s requested activity and returns the result of

request processing to the user’s workstation. Therefore, in his model,

the user’s processes need not be migrated to the server

 machines for getting the work done by those

machines.

For better overall system performance, the local disk of a

diskful workstation is normally used for such purposes as storage of

temporary files, storage of unshared files, storage of shared files that

are rarely changed, paging activity in virtual-memory management,

and changing of remotely accessed data.

As compared to the workstation model, the workstation –

server model has several advantages:

1. In general, it is much cheaper to use a few minicomputers

equipped with large, fast disks that are accessed over the network

than a large number of diskful workstations, with each workstation

having a small, slow disk.

2. Diskless workstations are also preferred to diskful workstations

from a system maintenance point of view. Backup and hardware

11

maintenance are easier to perform with a few large disks than with

many small disks scattered all over a building or campus.

Furthermore, installing new releases of software (Such as a file

server with new functionalities) is easier when the software is to

be installed on a few file server machines than on every

workstations.

3. In the workstation server model, since all files are managed by the

file servers, user have the flexibility to use any workstation and

access the files in the same manner irrespective of which

workstation the user is currently logged on. Note that this is not

true with the workstation model, in which each workstation has its

local file system, because different mechanisms are needed to

access local and remote files.

4. In the workstation server model, the request response protocol

described above is mainly used to access the services of the

server machines. Therefore, unlike the workstation model, this

model does not need a process migration facility, which is difficult

to implement.

The request response protocol is known as the client-server

model of communication. In this model, a client process (which in this

case resides on a workstation) sends a request to a server process

(Which in his case resides on a minicomputer) for getting some

service such as a block of a file. The server executes the request and

sends back a reply to the client that contains the result of request

processing.

The client-server model provides an effective general –

purpose approach to the sharing of information and resources in

distributed computing systems. It is not only meant for use with the

workstation – server model but also can be implemented in a variety

of hardware and software environments. The computers used to run

the client and server processes need not necessarily be workstations

and minicomputers. They can be of many types and there is no need

to distinguish between them. It is even possible for both the client and

server processes to be run on the same computer. Moreover, some

processes are both client and server processes. That is, a server

process may use the services of another server, appearing as a client

to the latter.

5. A user has guaranteed response time because workstations are

not used for executing remote processes. However, the model

does not utilize the processing capability of idle workstations.

1.3.3 Processor Pool Model :

12

The processor – pool model is based on the observation that

most of the time a user does not need any computing power but once

in a while he or she may need a very large amount of computing power

for a short time. (e.g., when recompiling a program consisting of a

large number of files after changing a basic shared declaration).

Therefore, unlike the workstation – server model in which a processor

is allocated to each user, in the processor-pool model the processors

are pooled together to be shared by the users as needed. The pool of

processors consists of a large number of microcomputers and

minicomputers attached to the network. Each processor in the pool

has its own memory to load and run a system program or an

application program of the distributed computing system.

As shown in fig. 1.5, in the pure processor-pool model, the

processors in the pool have no terminals attached directly to them,

and users access the system from terminals that are attached to the

network via special devices. These terminals are either small diskless

workstations or graphic terminals, such as X terminals. A special

server (Called a run server) manages and allocates the processors in

the pool to different users on a demand basis. When a user submits a

job for computation, an appropriate number of processors are

temporarily assigned to his or her job by the run server. For example,
if the user’s computation job is the compilation of a program having n

segments, in which each of the segments can be complied
independently to produce separate relocatable object files, n

processors from the pool can be allocated to this job to compile all the
n segments in parallel. When the computation is completed, the

processors are returned to the pool for use by other users.

In the processor-pool model there is no concept of a home

machine. That is, a user does not log onto a particular machine but to

the system as a whole.

1.3.4 Hybrid Model :

Out of the four models described above, the workstationserver

model, is the most widely used model for building distributed

computing systems. This is because a large number of computer

users only perform simple interactive tasks such as editing jobs,

sending electronic mails, and executing small programs. The

workstation-server model is ideal for such simple usage. However, in

a working environment that has groups of users who often perform

jobs needing massive computation, the processor-pool model is more

attractive and suitable.

To continue the advantages of both the workstation-server and

processor-pool models, a hybrid model may be used to build a

13

distributed computing system. The hybrid model is based on the

workstation-server model but with the addition of a pool of processors.

The processors in the pool can be allocated dynamically for

computations that are too large for workstations or that requires

several computers concurrently for efficient execution. In addition to

efficient execution of computation-intensive jobs, the hybrid model

gives guaranteed response to interactive jobs by allowing them to be

processed on local workstations of the users. However, the hybrid

model is more expensive to implement than the workstation – server

model or the processor-pool model.

EXERCISE:

1) Differentiate between time-sharing, parallel processing, network

and distributes operating systems.

2) In what respect are distributed computing systems better than

parallel processing systems?

3) Discuss the main guiding principles that a distributed operating
system designer must keep in mind for good performance of the
system?

4) What are the major issues of designing a Distributed OS?

5) What is the major difference between Network OD and

Distributed OS?

6) Why is scalability an important feature in the design of a
distributed OS? Discuss the guiding principles for designing a
scalable distributed system.





2

ISSUES IN DESIGNING A DISTRIBUTED

OPERATING SYSTEM

Unit Structure:

2.1 Issues in Designing a Distributed Operating System

2.2 Transparency

2.3 Performance Transparency

2.4 Scaling Transparency

2.5 Reliability

2.6 Fault Avoidance

14

2.7 Fault Tolerance

2.8 Fault Detection and Recovery

2.9 Flexibility

2.10 Performance

2.11 Scalability

2.1 ISSUES IN DESIGNING A

 DISTRIBUTED OPERATING SYSTEM

In general, designing a distributed operating system is more

difficult than designing a centralized operating system for several

reasons. In the design of a centralized operating system, it is assumed

that the operating system has access to complete and accurate

information about the environment in which it is functioning. For

example, a centralized operating system can request status

information, being assured that the interrogated component will not

charge state while awaiting a decision based on that status

information, since only the single operating system asking the

question may give commands. However, a distributed operating

system must be designed with the assumption that complete

information about the system environment will never be available. In

a distributed system, the resources are physically separated, there is

no common clock among the multiple processors, delivery of

messages is delayed, and messages could even be lost. Due to all

these reasons, a distributed operating system does not have up-to-

date, consistent knowledge about the state of the various components

of the underlying distributed system. Obviously, lack of up-to-date and

consistent information makes many things (Such as management of

resources and synchronization of cooperating activities) much harder

in the design of a distributed operating system. For example, it is hard

to schedule the processors optimally if the operation system is not

sure how many of them are up at the moment.

Despite these complexities and difficulties, a distributed

operating system must be designed to provide all the advantages of a

distributed system to its users. That is, the users should be able to

view a distributed system as a virtual centralized system that is

flexible, efficient, reliable, secure and easy to use. To meet this

challenge, the designers of a distributed operating system must deal

with several design issues

A distributed system that is able to present itself to user and
application as if it were only a single computer system is said to be

2.2 TRANSPARENCY

15

transparent. There are eight types of transparencies in a distributed
system:

1) Access Transparency: It hides differences in data representation

and how a resource is accessed by a user. Example, a distributed

system may have a computer system that runs different operating

systems, each having their own file naming conventions.

Differences in naming conventions as well as how files can be

manipulated should be hidden from the users and applications.

2) Location Transparency: Hides where exactly the resource is

located physically. Example, by assigning logical names to

resources like yahoo.com, one cannot get an idea of the location

of the web page’s main server.

3) Migration Transparency: Distributed system in which resources

can be moved without affecting how the resource can be accessed

are said to provide migration transparency. It hides that the

resource may move from one location to another.

4) Relocation Transparency: this transparency deals with the fact

that resources can be relocated while it is being accessed without

the user who is using the application to know anything. Example:

using a Wi-Fi system on laptops while moving from place to place

without getting disconnected.

5) Replication Transparency: Hides the fact that multiple copies of

a resource could exist simultaneously. To hide replication, it

is essential that the replicas have the same name. Consequently,

as system that supports replication should also support location

transparency.

6) Concurrency Transparency: It hides the fact that the resource

may be shared by several competitive users. Example, two

independent users may each have stored their file on the same

server and may be accessing the same table in a shared

database. In such cases, it is important that each user doesn’t

notice that the others are making use of the same resource.

7) Failure Transparency: Hides failure and recovery of the

resources. It is the most difficult task of a distributed system and

is even impossible when certain apparently realistic assumptions

are made. Example: A user cannot distinguish between a very

slow or dead resource. Same error message come when a server

is down or when the network is overloaded of when the connection

from the client side is lost. So here, the user is unable to

understand what has to be done, either the user should wait for

16

the network to clear up, or try again later when the server is

working again.

8) Persistence Transparency: It hides if the resource is in memory

or disk. Example, Object oriented database provides facilities for

directly invoking methods on storage objects. First the database

server copies the object states from the disk i.e. main memory

performs the operation and writes the state back to the disk. The

user does not know that the server is moving between primary and

secondary memory.

Persistence Hide whether a (software) resource is in memory

or on disk

Transparency Description

Access
Hide differences in data representation and how a

resource is accessed

Location Hide where a resource is located

Migration
Hide that a resource may move

 to another location

Relocation
Hide that a resource may be moved to another

location while in use

Replication
Hide that a resource may be shared by several

competitive users

Concurrency
Hide that a resource may be shared by several

competitive users

Failure Hide the failure and recovery of a resource

Summary of the transparencies

In a distributed system, multiple users who are spatially

separated use the system concurrently. In such a duration, it is

economical to share the system resources (hardware or software)

among the concurrently executing user processes. However since the

number of available resources in a computing system is restricted, one

user process must necessarily influence the action of other

concurrently executing user processes, as it competes for resources.

For example, concurrent updates to the same file by two different

processes should be prevented. Concurrency transparency means

that each user has a feeling that he or she is the sole user of the

system and other users do not exist in the system. For providing

concurrency transparency, the resource sharing mechanisms of the

distributed operating system must have the following four properties :

17

1. An event-ordering property ensures that all access requests to

various system resources are properly ordered to provide a

consistent view to all users of the system.

2. A mutual-exclusion property ensures that at any time at most one

process accesses a shared resource, which must not be used

simultaneously by multiple processes if program operation is to be

correct.

3. A no-starvation property ensures that if every process that is

granted a resource, which must not be used simultaneously by

multiple processes, eventually releases it, every request for that

resource is eventually granted.

4. A no-deadlock property ensures that a situation will never occur in

which competing processes prevent their mutual progress even

though no single one requests more resources than available in

the system.

2.3 PERFORMANCE TRANSPARENCY

The aim of performance transparency is to allow the system to

be automatically reconfigured to improve performance, as loads vary

dynamically in the system. As far as practicable, a situation in which

one processor of the system is overloaded with jobs while another

processor is idle should not be allowed to occur. That is, the

processing capability of the system should be uniformly distributed

among the currently available jobs in the system.

This requirements calls for the support of intelligent resource

allocation and process migration facilities in distributed operating

systems.

2.4 SCALING TRANSPARENCY

The aim of scaling transparency is to allow the system to

expand in scale without disrupting the activities of the users. This

requirement calls for open-system architecture and the use of scalable

algorithms for designing the distributed operating system
components.

In general, distributed systems are expected to be more

reliable than centralized systems due to the existence of multiple

instances of resources. However, the existence of multiple instances

of the resources alone cannot increase the system’s reliability. Rather,

the distributed operating system, which manages these resources

2.5 RELIABILITY

18

must be designed properly to increase the system’s reliability by taking

full advantage of this characteristic feature of a distributed system.

A fault is a mechanical or algorithmic defect that may generate

an error. A fault in a system causes system failure. Depending on the

manner in which a failed system behaves, system failures are of two

types – fail stop [Schlichting and Schneider 1983] and Byzantine

[Lamport et al. 1982]. In the case of fail-step failure, the system stops

functioning after changing to a state in which its failure can be

detected. On the other hand, in the case of Byzantine failure, the

system continues to function but produces wrong results. Undetected

software bugs often cause Byzantine failure of a system. Obviously,

Byzantine failures are much more difficult to deal with than fail-stop

failures.

For higher reliability, the fault-handling mechanisms of a

distributed operating system must be designed properly to avoid

faults, to tolerate faults, and to detect and recover form faults.

Commonly used methods for dealing with these issues are briefly

described text.

2.6 FAULT AVOIDANCE

Fault avoidance deals with designing the components of the

system in such a way that the occurrence of faults in minimized.

Conservative design practice such as using high reliability

components are often employed for improving the system’s reliability

based on the idea of fault avoidance. Although a distributed operating

system often has little or no role to play in improving the fault

avoidance capability of a hardware component, the designers of the

various software components of the distributed operating system must

test them thoroughly to make these components highly reliable.

2.7 FAULT TOLERANCE

Fault tolerance is the ability of a system to continue functioning

in the event of partial system failure. The performance of the system

might be degraded due to partial failure, but otherwise the system

functions properly. Some of the important concepts that may be used

to improve the fault tolerance ability of a distributed operating system

are as follows :

1. Redundancy techniques : The basic idea behind redundancy

techniques is to avoid single points of failure by replicating critical

hardware and software components, so that if one of them fails,

19

the others can be used to continue. Obviously, having two or more

copies of a critical component makes it possible, at least in

principle, to continue operations in spite of occasional partial

failures. For example, a critical process can be simultaneously

executed on two nodes so that if one of the two nodes fails, the

execution of the process can be completed at the other node.

Similarly, a critical file may be replicated on two or more storage

devices for better reliability.

Notice that with redundancy techniques additional system

overhead is needed to maintain two or more copies of a replicated

resource and to keep all the copies of a resource consistent. For

example, if a file is replicated on two or more nodes of a distributed

system, additional disk storage space is required and for correct

functioning, it is often necessary that all the copies of the file are

mutually consistent. In general, the larger is the number of copies

kept, the better is the reliability but the incurred overhead involved.

Therefore, a distributed operating system must be designed to

maintain a proper balance between the degree of reliability and

the incurred overhead. This raises an important question : How

much replication is enough? For an answer to this question, note
that a system is said to be k-fault tolerant if it can continue to

function even in the event of the failure of k components [Cristian

1991, Nelson 1990]. Therefore, if the system is to be designed to
tolerance k fail – stop failures, k + 1 replicas are needed. If k

replicas are lost due to failures, the remaining one replica can be

used for continued functioning of the system. On the other hand, if
the system is to be designed to tolerance k Byzantine failures, a

minimum of 2k + 1 replicas are needed. This is because a voting

mechanism can be used to believe the majority k +

 1 of the replicas when k replicas

 behave abnormally.

Another application of redundancy technique is in the design of a

stable storage device, which is a virtual storage device that can

even withstand transient I/O faults and decay of the storage media.

The reliability of a critical file may be improved by storing it on a

stable storage device.

2. Distributed control: For better reliability, many of the particular

algorithms or protocols used in a distributed operating system

must employ a distributed control mechanism to avoid single

points of failure. For example, a highly available distributed file

system should have multiple and independent file servers

controlling multiple and independent storage devices. In addition

to file servers, a distributed control technique could also be used

for name servers, scheduling algorithms, and other executive

20

control functions. It is important to note here that when multiple

distributed servers are used in a distributed system to provide a

particular type of service, the servers must be independent. That

is, the design must not require simultaneous functioning of the

servers; otherwise, the reliability will become worse instead of

getting better. Distributed control mechanisms are described

throughout this book.

2.8 FAULT DETECTION AND RECOVERY

The faulty detection and recovery method of improving

reliability deals with the use of hardware and software mechanisms to

determine the occurrence of a failure and then to correct the system

to a state acceptable for continued operation. Some of the commonly

used techniques for implementing this method in a distributed

operating system are as follows.

1. Atomic transactions : An atomic transaction (or just transaction

for shore) is a computation consisting of a collection of operation

that take place indivisibly in the presence of failures and

concurrent computations. That is, either all of the operations are

performed successfully or none of their effects prevails, other

processes executing concurrently cannot modify or observe

intermediate states of the computation. Transactions help to

preserve the consistency of a set of shared date objects (e.g. files)

in the face of failures and concurrent access. They make crash

recovery much easier, because transactions can only end in two

states : Either all the operations of the transaction are performed

or none of the operations of the transaction is performed.

In a system with transaction facility, if a process halts unexpectedly

due to a hardware error before a transaction is completed, the

system subsequently restores any data objects that were

undergoing modification to their original states. Notice that if a

system does not support a transaction mechanism, unexpected

failure of a process during the processing of an operation may

leave the data objects that were undergoing modification in an

inconsistent state. Therefore, without transaction facility, it may be

difficult or even impossible in some cases to roll back (recover) the

data objects from their current inconsistent states to their original

states.

2. Stateless servers: The client-server model is frequently used in

distributed systems to service user requests. In this model, a

server may be implemented by using any one of the following two

service paradigms – stateful or stateless. The two paradigms are

21

distinguished by one aspect of the client – server relationship,

whether or not the history of the serviced requests between a client

and a server affects the execution of the next service request. The

stateful approach does depend on the history of the serviced

requests, but the stateless approach does not depend on it.

Stateless servers have a distinct advantage over stateful servers

in the event of a failure. That is, the stateless service paradigm

makes crash recovery very easy because no client state

information is maintained by the server. On the other hand, the

stateful service paradigm requires complex crash recovery

procedures. Both the client and server need to reliably detect

crashes. The server needs to detect client crashes so that it can

discard any state it is holding for the client, and the client must

detect server crashes so that it can perform necessary error –

handling activities. Although stateful service becomes necessary

in some cases, to simplify the failure detection and recovery

actions, the stateless service paradigm must be used, wherever

possible.

3. Acknowledgments and timeout-based retransmission of

messages. In a distributed system, events such as a node crash

or a communication link failure may interrupt a communication that

was in progress between two processes, resulting in the loss of a

message. Therefore, a reliable interprocess communication

mechanism must have ways to detect lost messages so that they

can be retransmitted. Handling of lost messages usually involves

return of acknowledgment messages and retransmissions on the

basis of timeouts. That is, the receiver must return an

acknowledgment message for every message received, and if the

sender does not receive any acknowledgement for a message

within a fixed timeout period, it assumes that the message was lost

and retransmits the message. A problem associated with this

approach is that of duplicate message. Duplicates messages may

be sent in the event of failures or because of timeouts. Therefore,

a reliable interprocess communication mechanism should also be

capable of detecting and handling duplicate messages. Handling

of duplicate messages usually involves a mechanism for

automatically generating and assigning appropriate sequence

numbers to messages. Use of acknowledgement messages,

timeout-based retransmissions of messages, and handling of

duplicate request messages for reliable communication.

The mechanisms described above may be employed to create

a very reliable distributed system. However, the main drawback of

increased system reliability is potential loss of execution time

efficiency due to the extra overhead involved in these techniques. For

many systems it is just too costly to incorporate a large number of

22

reliability mechanisms. Therefore, the major challenge for distributed

operating system designers is to

integrate these mechanisms

producing a reliable system.

in a cost-effective manner for

2.9 FLEXIBILITY

Another important issue in the design of distributed operating

systems is flexibility. Flexibility is the most important features for open

distributed systems. The design of a distributed operating system

should be flexible due to the following reasons :

1. Ease of modification : From the experience of system designers,

it has been found that some parts of the design often need to be

replaced / modified either because some bug is detected in the

design or because the design is no longer suitable for the changed

system environment or new-user requirements. Therefore, it

should be easy to incorporate changes in the system in a user-

transparent manner or with minimum interruption caused to the

users.

2. Ease of enhancement : In every system, new functionalities have

to be added from time to time it more powerful and easy to use.

Therefore, it should be easy to add new services to the system.

Furthermore, if a group of users do not like the style in which a

particular service is provided by the operating system, they should

have the flexibility to add and use their own service that works in

the style with which the users of that group are more familiar and

feel more comfortable.

The most important design factor that influences the flexibility

of a distributed operating system is the model used for designing its

kernel. The kernel of an operating system is its central controlling part

that provides basic system facilities. It operates in a separate address

space that is inaccessible to user processes. It is the only part of an

operating system that a user cannot replace or modify. We saw that

in the case of a distributed operating system identical kernels are run

on all the nodes of the distributed system.

The two commonly used models for kernel design in distributed

operating systems are the monolithic kernel and the microkernel. In

the monolithic kernel model, most operating system services such as

process management, memory management, device management,

file management, name management, and inter-process

communication are provided by the kernel. As a result, the kernel has

a large, monolithic structure. Many distributed operating systems that

are extensions or limitations of the UNIX operating system use the

23

monolithic kernel model. This is mainly because UNIX itself has a

large, monolithic kernel.

On the other hand, in the microkernel model, the main goal is

to keep the kernel as small as possible. Therefore, in this model, the

kernel is a very small nucleus of software that provides only the

minimal facilities necessary for implementing additional operating

system services. The only services provided by the kernel in this

model are inter-process communication low level device

management, a limited amount of low-level process management and

some memory management. All other operating system services,

such as file management, name management, additional process,

and memory management activities and much system call handling

are implemented as user-level server processes. Each server process

has its own address space and can be programmed separately.

As compared to the monolithic kernel model, the microkernel

model has several advantages. In the monolithic kernel model, the

large size of the kernel reduces the overall flexibility and configurability

of the resulting operating system. On the other hand, the resulting

operating system of the microkernel model is highly modular in nature.

Due to this characteristic feature, the operating system of the

microkernel model is easy to design, implement, and install. Moreover,

since most of the services are implemented as user-level server

processes, it is also easy to modify the design or add new services.

In spite of its potential performance cost, the microkernel model

is being preferred for the design of modern distributed operating

systems. The two main reasons for this are as follows.

1. The advantages of the microkernel model more than compensate

for the performance cost. Notice that the situation here is very

similar to the one that caused high level programming languages

to be preferred to assembly languages. In spite of the better

performance of programs written in assembly languages, most

programs are written in high-level languages due to the

advantages of ease of design, maintenance, and portability.

Similarly, the flexibility advantages of the microkernel model

previously described more than outweigh its small performance

penalty.

2. Some experimental results have shown that although in theory the

microkernel model seems to have poorer performance than the

monolithic kernel model, this is not true in practice. This is because

other factors tend to dominate, and the small overhead involved in

exchanging messages is usually negligible.

24

If a distributed system is to be used its performance must be at

least as good as a centralized system. That is, when a particular

application is run on a distributed system, its overall performance

should be better than or at least equal to that of running the same

application on a single processor system. However, to achieve his

goal, it is important that the various components of the operating

system of a distributed system be designed properly; otherwise, the

overall performance of the distributed system may turn out to be worse

than a centralized system. Some design principles considered useful

for better performance are as follows :

1. Batch if possible, Batching often helps in improving performance

greatly. For example, transfer of data across the network in large

chunks rather than as individual pages is much more efficient.

Similarly, piggybacking of acknowledgement of previous

messages with the next message during a series of messages

exchanged between two communicating entities also improves

performance.

2. Cache whenever possible : Caching of data at clients’ sites

frequently improves overall system performance because it makes

data available wherever it is being currently used, thus saving a

large amount of computing time and network bandwidth. In

addition, caching reduces contention on centralized resources.

3. Minimize copying of data : Data copying overhead (e.g. moving

data in and out of buffers) involves a substantial CPU cost of many

operations. For example, while being transferred from its sender

to its receiver, a message data may take the following path on the

sending side :

(a) From sender’s stack to its message buffer

(b) From the message buffer in the sender’s address space to the

message buffer in the kernel’s address space

(c) Finally, from the kernel to the network interface board

On the receiving side, the data probably takes a similar path in the

reverse direction. Therefore, in this case, a total of six copy

operations are involved in the message transfer operation.

Similarly, in several systems, the data copying overhead is also

large for read and write operations on block I/O devices.

Therefore, for better performance, it is desirable to avoid copying

of data, although this is not always simple to achieve. Making

optimal use of memory management often helps in eliminating

2.10 PERFORMANCE

25

much data movement between the kernel, block I/O devices,

clients, and servers.

4. Minimize network traffic : System performance may also be

improved by reducing internode communication costs. For

example, accesses to remote resources require communication,

possibly through intermediate nodes. Therefore, migrating a

process closer to the resources it is using most heavily may be

helpful in reducing network traffic in the system if the decreased

cost of accessing its favorite resource offsets the possible

increased post of accessing its less favored ones. Another way to

reduce network traffic is to use the process migration facility to

cluster two or more processes that frequently communicate with

each other on the same node of the system. Avoiding the

collection of global state information for making some decision

also helps in reducing network traffic.

5. Take advantage of fine-grain parallelism for multiprocessing.

Performance can also be improved by taking advantage of

finegiam parallelism for multiprocessing. For example, threads are

often used for structuring server processes. Servers structured as

a group of threads can operate efficiently, because they can

simultaneously service requests from several clients. Finegrained

concurrency control of simultaneous accesses by multiple

processes, to a shared resource is another example of application

of this principle for better performance.

Throughout the book we will come across the use of these

design principles in the design of the various distributed operating

system components.

Scalability refers to the capability of a system to adapt to

increased service load. It is inevitable that a distributed system will

grow with time since it is very common to add new machines or an

entire subnetwork to the system to take care of increased workload or

organizational changes in a company. Therefore, a distributed

operating system should be designed to easily cope with the growth

of nodes and users in the system. That is, such growth should not

cause serious disruption of service or significant loss of performance

to users. Some guiding principles for designing scalable distributed

systems are as follows :

1. Avoid centralized entities : In the design of a distributed operating

system, use of centralized entities such as a single central file

2.11 SCALABILITY

26

server or a single database for the entire system makes the

distributed system non-scalable due to the following reasons :

Security :

In order that the users can trust the system and rely on it, the

various resources of a computer system must be protected against

destruction and unauthorized access. Enforcing security in a

distributed system is more difficult than in a centralized system

because of the lack of a single point of control and the use of insecure

networks for data communication. In a centralized system, all users

are authenticated by the system at login time, and the system can

easily check whether a user is authorized to perform the requested

operation on an accessed resource. In a distributed system, however,

since the client – server model is often used for requesting and

providing services, when a client sends a request message to a

server, the server must have some way of knowing who is the client.

This is not so simple as it might appear because any client

identification field in the message cannot be trusted. This is because

an intruder (a person or program trying to obtain unauthorized access

to system resources) may pretend to be an authorized client or may

change the message contents during transmission. Therefore, as

compared to a centralized system, enforcement of security in a

distributed system has the following additional requirements :

1. It should be possible for the sender of a message to know that the

message was received by the intended receiver.

2. It should be possible for the receiver of a message to know that

the message was sent by the genuine sender.

3. It should be possible for both the sender and receiver of a

message to be guaranteed that the contents of the message were

not changed while it was in transfer.

Cryptography is the only known practical method for dealing

with these security aspects of a distributed system. In this method

comprehension of private information is prevented by encrypting the

information, which can then be decrypted only by authorized users.

Another guiding principle for security is that a system whose

security depends on the integrity of the fewest possible entities is more

likely to remain secure as it grows. For example, it is much simpler to

ensure security based on the integrity of the much smaller number of

servers rather than trusting thousands of clients. In this case, it is

sufficient to only ensure the physical security of these servers and the

software they run.

Exercise:

27

1) Explain the various transparencies of a distributed system

2) How are location, relocation and migration transparencies different

from each other. Explain with examples.

3) Explain the flexibility of a DS.

4) Discuss the security aspects of a DS.



3

REMOTE PROCEDURE CALLS

Unit Structure:

3.1 Introduction to RPC

3.2 Transparency of RPC

3.3 Implementing RPC mechanism

3.4 Stub Generation

3.5 RPC Messages

3.6 Marshaling Arguments and Results

3.7 Server Management

3.1 INTRODUCTION TO RPC

• A remote procedure call (RPC) is an inter-process

communication that allows a computer program to cause a

procedure to execute in another address space (commonly on

another computer on a shared network) without the

programmer explicitly coding the details for this remote

interaction.

• It further aims at hiding most of the intricacies of message

passing and is idle for client-server application.

28

• RPC allows programs to call procedures located on other

machines. But the procedures ‘send’ and ‘receive’ do not

conceal the communication which leads to achieving access

transparence in distributed systems.

• Example: when process A calls a procedure on B, the calling

process on A is suspended and the execution of the called

procedure takes place. (PS: function, method, procedure

difference, stub, 5 state process model definition)

• Information can be transported in the form of parameters and

can come back in procedure result. No message passing is

visible to the programmer. As calling and called procedures

exist on different machines, they execute in different address

spaces, the parameters and result should be identical and if

machines crash during communication, it causes problems.

3.1.1 RPC Operations:

1) Conventional procedure call

For a call of a program, an empty stack is present to make the call,

the caller pushes the parameters onto the stack (last one first order).

After the read has finished running, it puts the return values in a

register and removes the return address and transfers controls back

to the caller. Parameters can be called by value or reference.

 Call by Value: Here the parameters are copied into the stack.

The value parameter is just an initialized local variable. The

called procedure may modify the variable, but such changes

do not affect the original value at the calling side.

 Call by reference: It is a pointer to the variable. In the call to

Read, the second parameter is a reference parameter. It does

not modify the array in the calling procedure.

 Call-by-copy: Another parameter passing mechanism exists

along with the above two, its called call-by-copy or Restore.

Here the caller copies the variable to the stack and then copies

the variable to the stack and then copies it back after the call,

overwriting the caller’s original values. The decision of which

parameter passing mechanism to use is normally made by the

language designers and is a fixed property of the language.

Sometimes it depends on the data type being passed.

2) Client and Server Stubs

 A stub in distributed computing is a piece of code used for

converting parameters passed during a Remote Procedure

Call.

29

 The main idea of an RPC is to allow a local computer (client)

to remotely call procedures on a remote computer (server). The

client and server use different address spaces, so conversion

of parameters used in a function call have to be performed;

otherwise the values of those parameters could not be used,

because of pointers to the computer's memory pointing to

different data on each machine.

 The client and server may also use different data

representations even for simple parameters. Stubs are used to

perform the conversion of the parameters, so a Remote

Function Call looks like a local function call for the remote

computer.

For transparency of RPC, the calling procedure should not know
 that the called procedure is executing on
 a different machine.

Figure 3.1: Principle of RPC between a client and server
program.

 Client Stub: Used when read is a remote procedure. Client stub

is put into a library and is called using a calling sequence. It

calls for the local operating system. It does not ask for the local

operating system to give data, it asks the server and then

blocks itself till the reply comes.

 Server Stub: when a message arrives, it directly goes to the

server stub. Server stub has the same functions as the client

stub. The stub here unpacks the parameters from the message

and then calls the server procedure in the usual way.

 Summary of the process:

1) The client procedure calls the client stub in the normal

way.

2) The client stub builds a message and calls the local

operating system.

30

3) The client's as sends the message to the remote as.

4) The remote as gives the message to the server stub.

5) The server stub unpacks the parameters and calls the

server.

6) The server does the work and returns the result to the

stub.

7) The server stub packs it in a message and calls its local

as.

8) The server's as sends the message to the client's as.

9) The client's as gives the message to the client stub.

10)The stub unpacks the result and returns to the client.

3.2 TRANSPARENCY OF RPC

A major issue in the design of an RPC facility is its transparency

property. A transparent RPC mechanism is one in which local

procedures and remote procedures are (effectively) indistinguishable

to programmers. This requires the following two types of

transparencies:

1. Syntactic transparency means that a remote procedures call

should have exactly the same syntax as a local procedure call.

2. Semantic transparency means that the semantics of a remote

procedure call are identical to those of a local procedure call.

It is not very difficult to achieve syntactic transparency of an

RPC mechanism, and we have seen that the semantics of remote

procedure calls are also analogous to that of local procedure calls for

most parts :

• The calling process is suspended until the called procedure

returns.

• The caller can pass arguments to the called procedure (remote

procedure).

• The called procedure (remote procedure) can return results to the

caller.

Unfortunately, achieving exactly the same semantics for

remote procedure calls as for local procedure calls is close to

impossible. This is mainly because of the following differences

between remote procedure calls and local procedure calls.

1. Unlike local procedure calls, with remote procedure calls the called

procedure is executed in an address space that is disjoint from the

31

calling program’s address space. Due to this reason, the called

(remote) procedure cannot have access to any variables or data

values in the calling program’s environment. Thus in the absence

of shared memory, it is meaningless to pass addresses in

arguments, making call-by-reference pointers highly unattractive.

Similarly, it is meaningless to pass argument values containing

pointer structures (e.g., linked lists), since pointers are normally

represented by memory addresses.

According to Bal et al. [1989] dereferencing a pointer passed by

the caller has to be done at the caller’s side, which implies extra

communication. An alternative implementation is to send a copy of

the value pointed at the receiver, but this has subtly different

semantics and may be difficult to implement if the pointer points

into the middle of a complex data structure, such as a directed

graph. Similarly, call by reference can be replaced by copy in /

copy out, but at the cost of slightly different semantics.

2. Remote procedure calls are more vulnerable to failure than local

procedure calls, since they involve two different processes and

possibly a network and two different computers. Therefore

programs that make use of remote procedure calls must have the

capability of handling even those errors that cannot occur in local

procedure calls. The need for the ability to take care of the

possibility of processor crashes and communication problems of a

network makes it even more difficult to obtain the same semantics

for remote procedure calls as for local procedure calls.

3. Remote procedure calls consume much more time (100 – 1000

times more) than local procedure calls. This is mainly due to the

involvement of a communication network in RPCs. Therefore

applications using RPCs must also have the capability to handle

the long delays that may possibly occur due to network

congestion.

Because of these difficulties in achieving normal call semantics

for remote procedure calls, some researchers feel that the RPC facility

should be nontransparent. For example, Hamilton [1984] argues that

remote procedures should be treated differently from local procedures

from the start, resulting in a nontransparent RPC mechanism.

Similarly, the designers of RPC were of the opinion that although the

RPC system should hide low-level details of message passing from

the users, failures and long delays should not be hidden from the

caller. That is, the caller should have the flexibility of handling failures

and long delays in an application – dependent manner. In conclusion,

although in most environments total semantic transparency is

32

impossible, enough can be done to ensure that distributed application

programmers feel comfortable.

3.3 IMPLEMENTING RPC MECHANISM

To achieve the goal of semantic transparency, the

implementation of an RPC mechanism is based on the concept of

stubs, which provide a perfectly normal (local) procedure call

abstraction by concealing from programs the interface to the

underlying RPC system. We saw that an RPC involves a client

process and a server process. Therefore, to conceal the interface of

the underlying RPC system from both the client and server processes,

a separate stub procedure is associated with each of the two

processes. Moreover, to hide the existence and functional details of

the underlying network, an RPC communication package (known as

RPCRuntime) is used on both the client and server sides. Thus,

implementation of an RPC mechanism usually involves the following

five elements of program [Birrell and Nelson 1984].

1. The client

2. The client stub

3. The RPCRuntime

4. The server stub

5. The server

The interaction between them is shown in Figure 4.2. The

client, the client stub, and one instance of RPCRuntime execute on

the client machine, while the server, the server stub, and another

instance of RPCRuntime execute on the server machine. The job of

each of these elements is described below.

33

Result packet

Fig. 3.2 : Implementation of RPC mechanism

Client :

The client is a user process that
 intitiates a remote procedure call. To make a remote
procedure call, the client makes a perfectly normal local call that
invokes a corresponding procedure in the client stub.

Client Stub :

The client stub is responsible for carrying out the following two tasks :

• On receipt of a call request from the client, it packs a specification

of the target procedure and the arguments into a message and

then asks the local RPCRuntime to send it to the server stub.

34

• On receipt of the result of procedure execution, it unpacks the

result and passes it to the client.

RPCRuntime :

The RPCRuntime handles transmission of messages across

the network between client and server machines. It is responsible for

retransmissions, acknowledgements, packet routing, and encryption.

The RPCRuntime on the client machine receives the call request

message from the client stub and sends it to the server machine. It

also receives the message containing the result of procedure

execution from the server machine and passes it to the client stub.

On the other hand, the RPCRuntime on the server machine

receives the message containing the result of procedure execution

from the server stub and sends it to the client machine. It also receives

the call request message from the client machine and passes it to the

server stub.

Server Stub :

The job of the server stub is very similar to that of the client

stub. It performs the following two tasks :

• On the receipt of the call request message from the local

RPCRuntime, the server stub unpacks it and makes a perfectly

normal call to invoke the appropriate procedure in the server.

• On receipt of the result of procedure execution from the server, the

server stub packs the result into a message and then asks the local

RPCRuntime to send it to the client stub.

Server :

On receiving a call request from the server stub, the server

executes the appropriate procedure and returns the result of

procedure execution to the server stub.

Note here that the beauty of the whole scheme is the total

ignorance on the part of the client that the work was done remotely

instead of by the local kernel. When the client gets control following

the procedure call that it made, all it knows is that the results of the

procedure execution are available to it. Therefore, as far as the client

is concerned, remote services are accessed by making ordinary

(local) procedure calls, not by using the send and receive primitives.

All the details of the message passing are hidden in the client and

server stubs, making the steps involved in message passing invisible

to both the client and the server.

35

3.4 STUB GENERATION

Stubs can be generated in one of the following two ways :

1. Manually : In this method, the RPC implementor provides a set of

translation functions from which a user can construct his or her

own stubs. This method is simple to implement and can handle

very complex parameter types.

2. Automatically : This is the more commonly used method for stub

generation. It uses Interface Definition Language (IDL) that is used

to define the interface between a client and a server. An interface

definition is mainly a list of procedure names supported by the

interface, together with the types of their arguments and results.

This is sufficient information for the client and server to

independently perform compile-time type checking and to

generate appropriate calling sequences. However, an interface

definition also contains other information that helps RPC reduce

data storage and the amount of data transferred over the network.

For example, an interface definition has information to indicate

whether each argument is input, output, or both – only input

arguments need be copied from client to server and only output

arguments need be copied from server to client. Similarly, an

interface definition also has information about type definitions,

enumerated types, and defined constants that each side uses to

manipulate data from RPC calls making it unnecessary for both

the client and the server to store this information separately.

A server program that implements procedures in an interface

is said to export the interface and a client program that calls

procedures from an interface is said to import the interface. When

writing a distributed application, a programmer first writes an interface

definition using the IDL. He or she can then write the client program

that imports the interface and the server program that exports the

interface. The interface definition is processed using an IDL computer

to generate components that can be combined with client and server

programs, without making any changes to the existing compliers. In

particular, from an interface definition, an IDL complier generate a

client stub procedure and a server such procedure for each procedure

is the interface, the appropriate marshaling and un-marshaling

operations (described later in this chapter) in each stub procedure,

and a header file that supports the data types in the interface

definition. The header file is included in the source files of both the

client and server programs, the client stub procedures are complied

and linked with the client program, and the server stub procedures are

compiled and linked with the server program. An IDL compiler an be

designed to process interface definitions for use with different

36

languages, enabling clients and servers written in different languages,

to communicate by using remote procedure calls.

Any remote procedure call involves a client process and a

server process that are possibly located on different computers. The

mode of interaction between the client and server is that the client

asks the server to execute a remote procedure and the server returns

the result of execution of the concerned procedure to the client. Based

on this mode of interaction, the two types of messages involved in the

implementation of an RPC system are as follows :

1. Call messages that are sent by the client to the server for

requesting execution of a particular remote procedure.

2. Reply messages that are sent by the server to the client for

returning the result of remote procedure execution.

The protocol of the concerned RPC system defines the format

of these two types of message. Normally, an RPC protocol is

independent of transport protocols. That is, RPC does not care how a

message is passed from one process to another. Therefore an RPC

protocol deals only with the specification and interpretation of these

two types of messages.

Call Messages :

Since a call message is used to request execution of a

particular remote procedure the two basic components necessary in a

call message are as follows :

1. The identification information of the remote procedure to be

executed.

2. The arguments necessary for the execution of the procedure.

In addition to these two fields, a call message normally has the

following fields.

3. A message identification field that consists of a sequence number.

This field is useful of two ways – for identifying lost messages and

duplicate messages in case of system failures and for properly

matching reply messages to outstanding call messages,

especially in those cases when the replies of several outstanding

call messages arrive out of order.

3.5 RPCMESS AGES

37

4. A message type field that is used to distinguish call messages from

reply messages. For example, in an RPC system, this field may be

set to 0 for all call messages and set to 1 for all reply messages.

5. A client identification field that may be used for two purposes – to

allow the server of the RPC to identify the client to whom the reply

message has to be returned and to allow the server to check the

authentication of the client process for executing the concerned

procedure.

Thus, a typical RPC all message format may be of the form

shown in Figure 3.2.

Reply Messages :

When the server of an RPC receives a call message from a

client, it could be faced with one of the following conditions. In the list

below, it is assumed for a particular condition that no problem was

detected by the server for any of the previously listed conditions :

(a)

Message
Identifier

Message

type

Reply
status

(unsuccessful)

Reason for

failure

(b)

Fig. 3.3 A typical RPC reply message format : (a) a successful

reply message format; (b) an unsuccessful reply message

format

3.6 MARSHALING ARGUMENTS AND RESULTS

Implementation of remote procedure calls involves the transfer

of arguments from the client process to the server process and the

transfer of results from the server process to the client process. These

arguments and results are basically language-level data structures

(program objects), which are transferred in the form of message data

between the two computers involved in the call. The transfer of

message data between two computers requires encoding and

Message
Identifier

Reply
status

(successful)
Result type

Message

38

decoding of the message data. For RPC this operation is known as

marshaling and basically involves the following actions.

1. Taking the arguments (of a client process) or the result (of a server

process) that will form the message data to be set to the remote

process.

2. Encoding the message data of step 1 above on the sender’s

computer. This encoding process involves the conversion of

program objects into a stream form that is suitable for transmission

and placing them into a message buffer.

3. Decoding of the message data on the receiver’s computer. This

decoding process involves the reconstruction of program objects

from the message data that was received in stream form.

In order that encoding and decoding of an RPC message can

be performed successfully, the order and the representation method

(tagged or untagged) used to marshal arguments and results must be

known to both the client and the server of the RPC. This provides a

degree of type safety between a client a server because the server

will not accept a call from a client until the client uses the same

interface definition as the server. Type safety is of particular

importance to servers since it allows them to survive against corrupt

call requests.

The marshaling process must reflect the structure of all types

of program objects used in the concerned language. These include

primitive types, structured types, and user defined types. Marshaling

procedures may be classified into two groups :

1. Those provided as a part of the RPC software. Normally

marshaling procedures for scalar data types, together with

procedures to marshal compound types built from the scalar ones,

fall in this group.

2. Those that are defined by the users of the RPC system. This group

contains marshaling procedures for user – defined data types and

data types that include pointers. For example, in Concurrent CLU,

developed for use in the Cambridge Distributed Computer System,

for user-defined types, the type definition must contain procedures

for marshaling.

A good RPC system should always generate
 in-line marshaling code for every remote call so that the users are
relieved of the burden of writing their own marshaling
 procedures.

39

However, practically it is difficult to achieve this goal because of the

unacceptable large amounts of code that may have to be generated

for handling all possible data types.

3.7 SERVER MANAGEMENT

In RPC based applications, two important issues that need to

be considered for every management are server implementation and

server creation.

Server Implementation :

Based on the style of implementation used, servers may be of

two types : stateful and stateless.

Stateful Servers :

A stateful server maintains clients’ state information from one

remote procedure call to the next. That is, in case of two subsequent

calls by a client to a stateful server, some state information pertaining

to the service performed for the client as a result of the first call

execution is stored by the server process. These clients’ state

information is subsequently used at the time of executing the second

call.

For example, let us consider a server for byte-stream files that

allows the following operations on files :

Open (filename, mode) : This operation is used to open a file

identified by filename in the specified mode. When the server

executes this operation, it creates an entry for this file in a file-table

that it uses for maintaining the file state information of all the open

files. The file state information normally consists of the identifier of the

file, the open mode, and the current position of a nonnegative integer

pointer, called the read write pointer. When a file is opened, its read-

write pointer is set to zero and the server returns to the client a file

identifier (fid), which is used by the client for subsequent accesses to

that file.

Read (fid, n, buffer) : This operation is used to get n bytes of data

from the file identified by fid into the buffer named buffer. When the
server executes this operation, it returns to the client n bytes of file

data starting from the byte currently addressed by the read – write

pointer and then increments the read – write pointer by n.

Write (fid, n, buffer) : On execution of this operation, the server takes

n bytes of data from the specified buffer, writes it into the file identified

40

by fid at the byte position currently addressed by the read – write

pointer, and then increments the read – write pointer by n.

Seek (fid, position) : This operation causes the server to change the

value of the read write pointer of the file identified by fid to the new

value specified as position.

Close (fid) : This statement causes the server to delete from its file

table the file state information of the file identified by fid.

The file server mentioned above is stateful because it

maintains the current state information for a file that has been opened

for use by a client. Therefore, as shown in Fig. 3.3, after opening a

file, if a client makes two subsequent Read (fig, 100, buf), calls, the

first call will return the first 100 bytes (bytes 0 – 99) and the second

call will return the next 100 bytes (bytes 100 – 199).

Fig. 3.3 An example of a stateful file server

To keep track of the current record position for each client that has

opened the file for accessing. Therefore to design an idempotent

interface for reading the next record from the file, it is important that

each client keeps track of its own current record position and the

server is made stateless, that is, no client state should be maintained

on the server side. Based on this idea, an idempotent procedure for

reading the next record from a sequential file is

ReadRecordN (Filename, N)

Filetable

fid Mode R/W
pointer

Serverprocess

Open(filename,mode)

Return(fid)

Read(fid,100,buf)

Return(bytes0to99)

Read(fid,100,buf)

Return(bytes100to199)

Clientprocess

.

.

.
.
.
.

.

.

.

41

which returns the Nth record from the specified file. In this case, the
client has to correctly specify the value of n to get desired record from

the file.

However, not all non idempotent interfaces can be so easily

transformed to an idempotent form. For example, consider the

following procedure for appending a new record to the same

sequential file.

AppendRecord (Filename, Record)

It is clearly not idempotent since repeated execution will add further

copies of the same record to the file. This interface may be converted

into an idempotent interface by using the following two procedures

instead of the one defined above :

GetLastRecordNo (Filename)

WriteRecordN (Filename, Record, N)

The first procedure returns the record number of the last record

currently in the file, and the second procedure writes a record at

specified in the file. Now, for appending a record, the client will have

to use the following two procedures :

Last = GetLastRecordNo (Filename)

WriteRecordN (Filename, Record, Last)

For exactly-once semantics, the programmer is relieved of the

burden of implementing the server procedure in an idempotent

manner because the call semantics itself takes care of executing the

procedure only once. The implementation of exactly-once call

semantics is based on the use of timeouts, retransmissions, call

identifiers with the same identifier for repeated calls, a reply cache

associated with the callee.

Exercise:

1) What is the primary motivation for development of RPC?

2) What is the main difference between RPC model and an

ordinary procedure call model?

3) What is a stub? How are they generated? State their

functionality and purpose.

4) What are the issues in developing a transparent RPC

mechanism?

42



43

4

REMOTE PROCEDURE CALL

Unit Structure:

4.1 Communication Protocols for RPCs

4.2 Complicated RPCs

4.3 Client – Server Binding

4.4 Exception Handling

4.5 Security

4.6 Some Special Types of RPCs

4.7 Lightweight RPC

4.8 Optimizations for Better Performance

4.1 COMMUNICATION PROTOCOLS FOR RPCS

Different systems, developed on the basis of remote procedure

calls, have different IPC requirements. Based on the needs of different

systems, several communication protocols have been proposed for

use in RPCs. A brief description of these protocols is given below.

Fig. 4.1 : The request / reply / acknowledge reply (RRA) protocol

In the RRA protocol, there is a possibility that the

acknowledgement message may itself get lost. Therefore

implementation of the RRA protocol requires that the unique message

44

identifiers associated with request messages must be ordered. Each

reply message contains the message identifier of the corresponding

request message, and each acknowledgement message also

contains the name same message identifier. This helps in matching a

reply with its corresponding request and an acknowledgement with its

corresponding reply. A client acknowledges a reply message only if it

has received the replies to all the requests previous to the request

corresponding to this reply.

Thus an acknowledgement message is interpreted as acknowledging

the receipt of all reply messages corresponding to the request

messages with lower message identifiers. Therefore, the loss of an

acknowledgement message is harmless.

4.2 COMPLICATED RPCs

The following are the two types of RPCs as complicated :

1. RPCs involving long-duration calls or large gaps between calls.

2. RPCs involving arguments and / or results that are too large to

fit in a signle datagram packet.

Different protocols are used for handling these two types of

complicated RPCs.

4.3 CLIENT – SERVER BINDING

How does a client locate a server ?

• Stubs are generated from a formal specification of a

server's interface:

 procedure names, signatures, in/out, version, etc.

• When server is initialized, it exports its interface by

registering at a binder program with a handle (e.g., ip

address and port)

• Upon a remote-procedure call, if client not-bound yet, it
imports interface from binder Advantages:

 location independence

 can balance load

 fault tolerance

 authentication, version validation

• Disadvantage:

 costly (first lookup)

 bottleneck, single-point of failure

45

It is necessary for a client to know the location of a server

before a RPC call can take place between them. The process by which

a client associated with a server so that calls can take place is known

as binding. Here the server exports its operations to register its

acceptance or availability to connect with the client. And client imports

their operations.

4.4 EXCEPTION HANDLING

We saw in Figure 4.1 that when a remote procedure cannot be

executed successfully, the server reports an error in the reply

message. An RPC also fails when a client cannot contact the server

of the RPC. An RPC system must have an effective exception –

handling mechanism for reporting such failures to clients. One

approach to do this is to define an exception condition for each

possible error type and have the corresponding exception raised when

an error of that type occurs, causing the exceptionhandling procedure

to be called and automatically executed in the client’s environment.

This approach can be used with those programming languages that

provide language constructs for exception handling. Some such

programming languages are ADA, CLU, and Modula – 3. In C

language, signal handlers can be used for the purpose of exception

handling.

However, not every language has an exception – handling

mechanism. For example, Pascal does not have such a mechanism.

RPC systems designed for use with such languages generally use the

method provided in conventional operating systems for exception

handling. One such method is to return a well-known value to the

process, making a system call to indicate failure and to report the type

of error by storing a suitable value in a variable in the environment of

the calling program. For example, in UNIX the value – 1 is used to

indicate failure, and the type of erro is reported in the global variable

erino. In an RPC, a return value indicating an error is used both for

errors due to failure to communicate with the server and errors

reported in the reply message from the server. The details of the type

of error is reported by storing a suitable value in a global variable in

the client program. This approach suffers from two main drawbacks.

First, it requires the client to test every return value. Second, it is not

general enough because a return value used to indicate failure may

be a perfectly legal value to be returned by a procedure. For example,

if the value – 1 is used to indicate failure, this value is also the return

value of a procedure call with arguments – 5 and 4 to a procedure for

getting the sum of two numbers.

4.5 SECURITY

46

Some implementations of RPC include facilities for client and

server authentication as well as for providing encryption – based

security for calls. For example, callers are given a guarantee of the

identity of the callee, and vice versa, by using the authentication

service of Grapevine. For full end-to-end encryption of calls and

results, the federal data encryption standard is used in. The encryption

techniques provide protection from eavesdropping (and conceal

pattern of data) and detect attempts at modification, replay, or creation

of calls.

In other implementations of RPC that do not include security

facilities, the arguments and results of RPC are readable by anyone

monitoring communications between the caller and the callee.

Therefore, in this case, if security is desired, the user must implement

his or her own authentication and data encryption mechanisms. When

designing an application, the user should consider the following

security issues related with the communication of messages :

• Is the authentication of the server by the client required?

• Is the authentication of the client by the server required when

the result is returned?

• Is it all right if the arguments and results of the RPC are

accessible to users other than the caller and the callee?

These and other security issues are described in detail in

4.6 SOME SPECIAL TYPES OF RPCs

4.6.1 Callback RPC :

In the usual RPC protocol, the caller and callee processes have

a client – server relationship. Unlike this, the callback RPC facilitates

a peer-to-peer paradigm among the participating processes. It allows

a process to be both a client and a server.

Callback RPC facility is very useful in certain distributed

applications. For example, remotely processed interactive

applications that need user input from time to time or under special

conditions for further processing require this type of facility. In such

applications, the client process makes an RPC to the concerned

server process, and during procedure execution for the client, the

server process makes a callback RPC to the client process. The client

process takes necessary action based on the server’s request and

returns a reply for the call back RPC to the server process. On

receiving this reply, the server resumes the execution of the procedure

and finally returns the result of the initial call to the client. Note that the

47

server may make several callbacks to the client before returning the

result of the initial call to the client process.

The ability for a server to call its client back is very important,

and care is needed in the design of RPC protocols to ensure that it is

possible. In particular, to provide callback RPC facility, the following

are necessary :

• Providing the server with the client’s handle

• Making the client process wait for the callback RPC

• Handling callback deadlocks

4.6.2 Commonly used methods to handle these issues are

described below.

Notation in one machine architecture and in 2’s complement

notation in another machine architecture. Floating-point

representations may also vary between two different machine

architectures. Therefore, an RPC system for a heterogeneous

environment must be designed to take care of such differences in data

representations between the architectures of client and server

machines of a procedure call.

1. Transport protocol : For better portability of applications, an RPC

system must be independent of the underlying network transport

protocol. This will allow distributed applications using the RPC

system to be run on different networks that use different transport

protocols.

2. Control protocol : For better portability of applications, an RPC

system must also be independent of the underlying network

control protocol that defines control information in each transport

packet to track the state of a call.

The most commonly used approach to deal with these types of

heterogeneity while designing an RPC system for a heterogeneous

environment is to delay the choices of data representation, transport

protocol, and control protocol until bind time. In conventional RPC

systems, all these decisions are made when the RPC system is

designed. That is, the binding mechanism of an RPC system for a

heterogeneous environment is considerably richer in information than

the binding mechanism used by a conventional RPC system. It

includes mechanisms for determining which data conversion software

(if any conversion is needed), which transport protocol, and which

control protocol should be used between a specific client and server

and returns the correct procedures to the stubs as result parameters

of the binding call. These binding mechanism details are transparent

to the users. That is, application programs never directly access the

48

component structures of the binding mechanism; they deal with

bindings only as atomic types and acquire and discard them via the

calls of the RPC system.

4.7 LIGHTWEIGHT RPC

The Lightweight Remote Procedure Call (LRPC) was

introduced by Berhsad and integrated into the Taos operating system

of the DEC SRC Firefly microprocessor workstation. The description

below is based on the material in their paper.

Based on the size of the kernel, operating systems may be

broadly classified into two cateogies – monolithic – kernel operating

systems and microkernel operating systems. Monolithic – kernel

operating systems have a large, monolithic kernel that is insulated

from user programs by simple hardware boundaries. On the other

hand, in microkernel operating systems, a small kernel provides only

primitive operations and most of the services are provided by user-

level servers. The servers are usually implemented as processes and

can be programmed separately. Each server forms a component of

the operating system and usually has its own address space. As

compared to the monolithic – kernel approach, in this approach

services are provided less efficiently because the various components

of the operating system have to use some form of IPC to communicate

with each other. The advantages of this approach include simplicity

and flexibility. Due to modular structure, microkernel operating

systems are simple and easy to design, implement, and maintain.

In the microkernel approach, when different components of the

operating system have their own address spaces, the address space

of each component is said to form a domain, and messages are used

for all interdomain communication. In this case, the communication

traffic in operating systems are of two types:

1. Cross-domain, which involves communication between domains

on the same machine.

2. Cross-machine, which involves communication between domains

located on separate machines.

The LRPC is a communication facility

 designed and optimized for cross-domain communications.

Although conventional RPC systems can be used for both

cross-domain and cross machine communications. Bershad et al.

observed that the use of conventional RPC systems for crossdomain

communications, which dominate cross-machine communications,

incurs an unnecessarily high cost. This cost leads system designers

49

to coalesce weakly related components of microkernel operating

systems into a single domain, trading safety and performance.

Therefore, the basic advantages of using the microkernel approach

are not fully exploited. Based on these observations, Bershad et al.

designed the LRPC facility for crossdomain communications, which

has better performance than conventional RPC systems.

Nonetheless, LPRC is safe and transparent and represents a viable

communication alternative for microkernel operating systems.

To achieve better performance than conventional RPC

systems, the four techniques described below are used by LRPC.

4.7.1 Simple Control Transfer :

Whenever possible, LRPC uses a control transfer mechanism

that is simpler than the used in conventional RPC systems. For

example, it uses a special threads scheduling mechanism, called

handoff scheduling for direct context switch from the client thread to

the server thread of an LRPC. In this mechanism, when a client calls

a server’s procedure, it provides the server with an argument stack

and its own thread of execution. The call causes a trap to the kernel.

The kernel validates the caller, creates a call linkage, and dispatches

the client’s thread directly to the server domain, causing the server to

start executing immediately. When the called procedure completes,

control and results return through the kernel back to the point of the

client’s call. In contrast to this, is conventional RPC implementations,

context switching between the client and server threads of an RPC is

slow because the client thread and the server thread are fixed in their

own domains, signaling one another at a rendezvous, and the critical

domain transfer path. On the other hand, latency is reduced by

reducing context switching overhead by caching domains on idle

processors. This is basically a generalization of the idea of decreasing

operating system latency by caching recently blocked threads on idle

processors to reduce wake-up latency. Instead of threads, LRPC

caches domains so that any thread that needs to run in the context of

an idle domain can do so quickly, not just the thread that ran there

most recently.

It was found that LRPC achieves a factor-of-three performance

improvement over more traditional approaches. Thus LRPC reduces

the cost of cross-domain communication to nearly the lower bound

imposed by conventional hardware.

50

4.8 OPTIMIZATIONS FOR BETTER PERFORMANCE

As with any software design, performance is an issue in the

design of a distributed application. The description of LRPC shows

some optimizations that may be adopted for better performance of

distributed applications using RPC. Some other optimizations that

may also have significant payoff when adopted for designing RPC

based distributed applications are described below.

Concurrent Access to Multiple Servers :

Although one of the benefits of RPC is its synchronization

property, many distributed applications can benefit from concurrent

access to multiple servers. One of the following three approaches may

be used for providing this facility :

1. The use of threads in the implementation of a client process where

each thread can independently make remote procedure calls to

different servers. This method requires that the addressing in the

underlying protocol is rich enough to provide correct routing of

responses.

2. Another method is the use of the early reply. As shown in Figure

3.5, in this method a call is split into two separate RPC calls, one

passing the parameters to the server and the other requesting the

result. In reply to the first call, the server returns a tag that is sent

back with the second call to match the call with the correct result.

The client decides the time delay between the two calls and carries

out other activities during this period, possibly making several

other RPC calls. A drawback of this method is that the server must

hold the result of a call until the client makes a request for it.

Therefore, if the request for results is delayed, it may cause

congestion or unnecessary overhead at the server.

51

Fig. 4.2 : The early reply approach for providing the reality of

concurrent access to multiple servers

3. The third approach, known as the call buffering approach, was

proposed by Gimson [1985]. In this method, clients and servers do

not interact directly with each other. They interact indirectly via a

call buffer server. To make an RPC call, a client sends its call

request to the call buffer server, where the request parameters

together with the name of the server and the client are buffered.

The client can then perform other activities until it needs the result

of the RPC call. When the client reaches a state in which it needs

the result, it periodically polls the call buffer server to see if the

result of the call is available, and if so, it recovers the result. On

the server side, when a server is free, it periodically polls the call

buffer server to see if there is any call for it. If so, it recovers the

call request, executes it, and makes a call back to the call buffer

server to return the result of execution to the call buffer server. The

method is illustrated in Figure 4.2

The Mercury communication system has a new data type

called promise that is created during an RPC call and is given a type

corresponding to those of the results and exceptions of the remote

procedure. When the results arrive, they are stores in the appropriate

promise from where the caller claims the results at a time suitable to

it. Therefore, after making a call, a caller can continue with other work

Client Server

Replytag

Requestresult(tag)

procedure Execute

Callprocedure(parameter)

Return(tag)

Reply(result)

Store(result)

Return(result)

Carryoutother
activities

52

and subsequently pick up the results of the call from the appropriate

promise.

A promise is in one of two states – blocked or ready. It is in a

blocked state from the time of creation to the time the results of the

call arrive, whereupon it enters the ready state. A promise in the ready

state is immutable.

Exercise

1) The caller process of an RPC must wait for a reply from the
callee process after making a call. Explain how this can
actually be done.

2) How is optimization of RPC done to enhance the

performance?

3) Elaborate on Lightweight RPC.

4) List and explain the special RPC models.



5

DISTRIBUTED SHARED MEMORY

Unit Structure:

5.1 Consistency Models

5.3 Sequential Consistency Model

5.4 Causal Consistency Model

5.5 Reduction

5.6 Conventional

5.7 Replacement Strategy

5.8 Which Block to Replace

5.9 Where to place a replaced Block

5.10 Thrashing

5.11 Advantages of DSM

5.12 Simpler Abstruction

5.13 Better Portability of Distributed Application Programs

53

5.14 Better Performance of some applications

5.15 Flexible Communication Environment

5.1 CONSISTENCY MODELS

Consistency requirements vary from application to application.

A consistency model basically refers to the degree of consistency that

has to be maintained for the shared – memory data for the memory to

work correctly for a certain set of applications. It is defined as a set of

rules that applications must obey if they want to DSM system to

provide the degree of consistency guaranteed by the consistency

model. Several consistency models have been proposed in the

literature. Of these, the main ones are described below.

It may be noted here that the investigation of new consistency

models is currently an active area of research. The basic idea is to

invent a consistency model that can allow consistency requirements

to be related to a greater degree than existing consistency models,

with the relaxation done in such a way that a set of applications can

function correctly. This helps in improving the performance of these

applications because better concurrency can be achieved by relaxing

the consistency requirement. However, applications that depend on a

stronger consistency model may not perform correctly if executed in a

system that supports only a weaker consistency model. This is

because if a system supports the stronger consistency model, then

the weaker consistency model is automatically supported but the

converse is not true.

5.2 STRICT CONSISTENCY MODEL

The strict consistency model is the strongest form of memory

coherence, having the most stringent consistency requirement. A

shared-memory system is said to support the strict consistency model

if the value returned by a read operation on a memory address is

always the same as the value written by the most recent write

operation to that address, irrespective of the locations of the

processes performing the read and write operations. That is, all writes

instantaneously become visible to all processes.

Implementation of the strict consistency model requires the

existence of an absolute global time so that memory read / write

operations can be correctly ordered to make the meaning of “most

recent” clear. However, absolute synchronization of clocks of all the

nodes of a distributed system is not possible. Therefore, the existence

of an absolute global time in a distributed system is also not possible.

54

Consequently, implementation of the strict consistency model for a

DSM system is practically impossible.

5.3 SEQUENTIAL CONSISTENCY MODEL

The sequential consistency model was proposed Lamport

[1979]. A shared-memory system is said to support the sequential

consistency model if all processes see the same order of all memory

access operations on the shared memory. The exact order in which

the memory access operations are interleaved does not matter. That

is, if the three operations read r1 , write w1 , read r2 are

preformed on a memory address in that order, any of the orderings r

w r1 1 2, , , r r w1 2 1, , , w r r1 1 2, , , w r r1 2 1, ,

, r r w2 1 1, , ,

r w r
2 1 1, , of the three operations is acceptable provided all

processes see the same ordering. If one process sees one of the

orderings of the three operations and another process sees a different

one, the memory is not a sequentially consistent memory. Note here

that the only acceptable ordering for a strictly consistent memory is

r w r1 1 2, , .

The consistency requirement of the sequential consistency

model is weaker than that of the strict consistency model because the

sequential consistency model does not guarantee that a read

operation on a particular memory address always return the same

value as written by the most recent write operation to that address. As

a consequence, with a sequentially consistent memory, running a

program twice may not give the same result in the absence of explicit

synchronization operations. This problem does not exist in a strictly

consistent memory.

A DSM system supporting the sequential consistency model

can be implemented by ensuring that no memory operation is started

until all the previous ones have been completed. A sequentially

consistent memory provides one-copy / single-copy semantics

because all the process sharing a memory location always see exactly

the same contents stored in it. This is the most intuitively expected

semantics for memory coherence. Therefore, sequential consistency

is acceptable by most applications.

55

5.4 CAUSAL CONSISTENCY MODEL

The causal consistency model, relaxes the requirement of the

sequential consistency model for better concurrency. Unlike the

sequential consistency model, in the causal consistency model, all

processes see only those memory reference operations in the same

(correct) order that are potentially causally related. Memory reference

operations that are not potentially causally related may be seen by

different processes in different orders. A memory reference operation

(Read / write) is said to be potentially causally related to another

memory reference operation if the first one might have been

influenced in any way by the second one. For example, if a process

performs a read operation followed by a write operation, the write

operation is potentially causally related to the read operation because

the computation of the value written may have depended in some way

on the value obtained by the read operation. On the other hand, a

write operation performed by one process is not causally related to a

write operation performed by another process if the first process has

not read either the value written by the second process or any memory

variable that was directly or indirectly derived from the value written

by the second process.

A shared memory system is said to support the causal

consistency model if all write operations that are potentially causally

related are seen by all processes in the same (correct) order. Write

operations that are not potentially causally related may be seen by

different processes in different orders. Note that “correct order” means

that if a write operation w2 is causally related to another write

operation w1 , the acceptable order is w w1, 2 because the

value written by w2 might have been influenced in some way by the

value written by w1.

order.
Therefore, w w2,

1

is not an acceptable

5.5 REDUCTION

Shared variables that must be aomatically modified may be

annotated to be reduction type. For example, in a parallel computation

application, a global minimum must be atomically fetched and

modified if it is greater than the local minimum. In Munin, a reduction

variable is always modified by being locked (acquire lock), read,

updated, and unlocked (release lock). For better performance, a

reduction variable is stored at a fixed owner that receives updates to

the variable from other processes, synchronizes the updates received

from different processes, performs the updates on the variable, and

propagates the updated variable to its replica locations.

56

Shared variables that are not annotated as one of the above types

are conventional variables. The already described release

consistency protocol of Munin is used to maintain the consistency of

replicated conventional variables. The write invalidation protocol is

used in this case of ensure that no process ever reads a stale version

of a conventional variable. The page containing a conventional

variable is dynamically moved to the location of a process that wants

to perform a write operation on the variable.

Experience with Munin has shown that read-only migratory,

and write shared annotation types are very useful because variables

of these types are frequently used, but producer, consumer, result and

reduction annotation types are of little use because variable of these

types are less frequently used.

5.7 REPLACEMENT STRATEGY

In DSM systems that allow shared memory blocks to be

dynamically migrated / replicated, the following issues must be

addressed when the available space for caching shared data fills up

at a node :

1. Which block should be replaced to make space for a newly

required block?

2. Where should the replaced block be placed?

5.8 WHICH BLOCK TO REPLACE

The problem of replacement has been studied extensively for

paged main memories and shared memory multiprocessor systems.

The usual classification of replacement algorithms group them into the

following categories [Smith 1982] :

1. Usage based versus non-usage based : Usage based algorithms

keep track of the history of usage of a cache line (or page) and use

this information to make replacement decisions. That is, the reuse

of a cache line normally improves the replacement status of that

line. Least recently used (LRU) is an example of this type of

algorithm. Conversely, non-usagebased algorithms do not take

the record of use of cache lines into account when doing

replacement. First in, first out (FIFO) and Rand (Random or

pseudorandom) belong to this class.

5.6 CONVENTIONAL

57

2. Fixed space versus variable space : Fixed space algorithms

assume that the cache size is fixed while variable space

algorithms are based on the assumption that the cache size can

be changed dynamically depending on the need. Therefore,

replacement in fixed space algorithms simply involves the

selection of a selection of a specific cache line. On the other hand,

in a variable space algorithm, a fetch does not imply a

replacement, and a swap out can take place without a

corresponding fetch.

Variable space algorithms are not suitable for a DSM system

became each node’s memory that acts as cache for the virtually

shared memory is fixed in size. Moreover, as compared to non usage

based algorithms, usage based algorithms are more suitable for DSM

systems because they allow to take advantage of the data access

locality feature. However, unlike most caching systems, which use a

simple LRU policy for replacement, most DSM systems differentiate

the status of data items and use a priority spechanism. As an example,

the replacement policy used by the DSM system of IVY [LL 1986,

1988] is presented here. In the DSM system of IVY, each memory

block of a node is classified into one of the following five types.

1. Unused : A free memory block that is not currently being used.

2. Nil : A block that has been invalidated.

3. Read-only : A block for which the node has only read access right.

4. Read owned : A block for which the node has only read access

right but is also the owner of the block.

5. Writable : A block for which the node has write access permission,

Obviously, the node is the owner of the block because IVY uses

the write invalidate protocol.

Based on this classification of blocks, the

 following replacement priority is used.

1. Both unused and nil blocks have the highest replacement priority.

That is, they will be replaced first if a block is needed. It is obvious

for an usused block to have the highest replacement priority. A nil

block also has the same replacement priority because it is no

longer useful and future access to the block would cause a

network fault to occur. Notice that a nil block may be a recently

referenced block, and this is exactly why a simple LRU policy is

not adequate.

58

2. The read only blocks have the next replacement priority. This is

because a copy of a read only block is available with its owner,

and therefore it is possible to simply discard that block. When the

node again requires that block in the future, the block has to be

brought from its owner node at that time.

3. Read owned and writable blocks for which replica(s) exist on some

other node(s) have the next replacement priority because it is

sufficient to pass ownership to one of the replica nodes. The block

itself need not be sent, resulting in a smaller message.

4. Read owned and writable blocks for which only this node has a

copy have the lowest replacement priority because replacement of

such a block involves transfer of the block’s ownership as well as

the block from the current node to some other nodes. An LRU

policy is used to select a block for replacement when all the blocks

in the local cache have the same priority.

5.9 WHERE TO PLACE A REPLACED BLOCK

Once a memory block has been selected for replacement, it

should be ensured that if there is some useful information in the block,

it should not be lost. For example, simply discarding a block having

unused, Nil, or read only status does not lead to any loss of data.

Similarly, discarding a read owned of a writable block for which

replica(s) exist on some other node(s) is also harmless. However,

discarding a read owned or a writable block for which there is no

replica on any other node may lead to loss of useful data. Therefore,

care must be taken to store them somewhere before discarding. The

two commonly used approaches for storing a useful block at the time

of its replacement are as follows :

1. Using secondary store : In this method, the block is simply

transferred on to a local disk. The advantage of this method is that

it does not waste any memory space and if the node wants to

access the same block again, it can get the block locally without a

need for network access.

2. Using the memory space of other nodes : Sometimes it may be

faster to transfer a block over the network than to transfer it to a

local disk. Therefore, another method for storing a useful block is

to keep track of free memory space at all nodes in the system and

to simply transfer the replaced block to the memory or a node with

available space. This method requires each node to maintain a

table of free memory space in all other nodes. This table may be

59

updated by having each node piggyback its memory status

information during normal traffic.

Thrashing is said to occur when the system spends a large

amount of time transferring shared data blocks from one node to

another, compared to the time spent doing the useful work of

executing application processes. It is a serious performance problem

with DSM systems that allow data blocks to migrate from one node to

another. Thrashing may occur in the following situations :

1. When interleaved data accesses made by processes on two or

more nodes causes a data block to move back and forth fro one

node to another in quick succession (a ping – pong effect)

2. When blocks with read only permissions are repeatedly invalidated

soon after they are replicated.

Such situations indicate poor (node) locality in references. If

not properly handled, thrashing degrades system performance

considerably. Therefore, steps must be taken to solve this problem.

The following methods may be used to solve the thrashing problem in

DSM systems :

1. Providing application – controlled locks : Locking data to prevent

other nodes from accessing that for a short period of time can

reduce thrashing. An application controlled lock can be associated

with each data block to implement this method.

2. Nailing a block to a node for a minimum amount of time : Another

method to reduce thrashing is to disallow a block to be taken away

from a node until a minimum amount of time t elapses after its

allocation to that node. The time t can either be fixed statically or

be turned dynamically on the basis of access patterns. For

example, Mirage [Fleisch and Popek 1989] employs this method

to reduce thrashing and dynamically determines the minimum

amount of time for which a block will be available at a node on the

basis of access patterns.

The main drawback of this scheme is that it is very difficult to

choose the appropriate value for the time. If the value is fixed

statically, it is liable to be inappropriate in many cases. For

example, if a process accesses a block for writing to it only once,

other processes will be prevented from accessing the block until
time t elapses. On the other hand, it a process accesses a block

for performing several write operations on it, time t may elapse

5.10 THRASHING

60

before the process has finished using the block and the system

may grant permission to another process for accessing the block.
Therefore, tuning the value of t dynamically is the preferred

approach in this case, the value of t for a block can be decided

based on past access patterns of the block. The MMU’s reference

bits may be used for this purpose. Another factor that may be used

for deciding the value of t for a block is the length of a the queue

of processes waiting for their turn to access the block.

3. Tailoring the coherence algorithm to the shared data usage pattern

Thrashing can also minimized by using different coherence

protocols for shared data having different characteristics. For

example, the coherence protocol used in Munin for write shared

variables avoids the false sharing problem, which ultimately results

in the avoidance of thrashing.

Notice from the description above that complete transparency

of distributed shared memory is compromised somewhat while trying

to minimize thrashing. This is because most of the approaches

described above require the programmer’s assistance. For example,

in the method of application controlled locks, the use of locks needs

to be directed towards a particular shared memory algorithm and

hence the shared memory abstraction can no longer be transparent.

Moreover, the application must be aware of the shared data it is

accessing and its shared access patterns. Similarly, Munin requires

programmers to annotate shared variables with standard annotation

types, which makes the shared memory abstraction nontransparent.

2. Smallest page size algorithm : In this method, the DSM block

size is taken as the smallest VM page size of all machines. If a

page fault occurs on a node with a large page size, multiple blocks

(whose total size is equal to the page size of the faulting node) are

moved to satisfy the page fault. Although this algorithm reduces

data contention, it suffers from the increased communication and

block table management overheads associated with small sized

blocks.

3. Intermediate page size algorithm : To balance between the

problems of large and small sized blocks, a heterogeneous DSM

system may select to choose a block size somewhere in between

the largest VM page size and the smallest VM page size of all

machines.

61

5.11 ADVANTAGES OF DSM

Distributed Shared Memory is a high level mechanism for

interprocess communication in loosely coupled distributed systems. It

is receiving increased attention because of the advantages it has over

the message passing mechanisms. These advantages are discussed

below.

5.12 SIMPLER ABSTRUCTION

By now it is widely recognized that directly programming

loosely coupled distributed memory machines using message passing

models is tedious and error phone. The main reason is that the

message passing models force programmers to be conscious of data

movement between processes at all times, since processes must

explicitly use communication primitives and channels or ports. To

alleviate this burden, RPC was introduced to provide a procedure call

interface. However, even in RPC, since the procedure call is

performed in an address space different from that of the caller’s

address space, it is difficult for the caller to pass context related data

or complex data structures; that is, parameters must be passed by

value. In the message passing model, the programming task is further

complicated by the fact that data structures passed between

processes in the front of messages must be packed and unpacked.

The shared memory programming paradigm shields the application

programmers from many such low level concerns. Therefore, the

primary advantage of DSM is the simpler abstraction it provides to the

application programmers of loosely coupled distributed memory

machines.

5.13 BETTER PORTABILITY OF DISTRIBUTED

APPLICATION PROGRAMS

The access protocol used in case of DSM is consistent with the

way sequential applications access data. This allows for a more

natural transition from sequential to distributed applications. In

principle, distributed application programs written for a shared

memory multiprocessor system can be executed on a distributed

shared memory system without change. Therefore, it is easier to port

an existing distributed application program to a distributed memory

system with DSM facility than to a distributed men system without this

facility.

5.14 BETTER PERFORMANCE OF SOME

62

APPLICATIONS

The layer of software that provides DSM abstraction is

implemented on top of a message passing system and uses the

services of the underlying message passing communication system.

Therefore, in principle, the performance of applications that the DSM

is expected to be worse than if they use message passing directly.

However, this is not always true, and it has been found that some

applications using DSM can even outperform their message passing

counterparts. This is possible for three reasons [Stumm and Zhou

1990] :

1. Locality of data : The communication model of DSM is to make

the data more accessible by moving it around. DSM algorithms

normally move data between nodes in large blocks. Therefore, in

those applications that exhibit a reasonable degree of locality in

their data accesses, communication overhead is amortized over

multiple memory accesses. This ultimately results in reduced

overall communication cost for such applications.

2. On demand data movement : The computation model of DSM

also facilitates on demand movement of data as they are being

accessed. On the other hand, there are several distributed

applications that execute in phase, where each computation phase

is preceded by a data exchange phase. The time needed for the

data exchange phase is often dictated by the throughput of

existing communication bottlenecks. Therefore, in such

applications, the on demand data movement facility provided by

DSM eliminates the data exchange phase, spreads

the communication load over a longer period of time, and allows

for a greater degree of concurrency.

3. Larger memory space : With DSM facility, the total memory size

is the sum of the memory sizes of all the nodes in the system.

Thus, paging and swapping activities, which involve disk access,

are greatly reduced.

5.15 FLEXIBLE COMMUNICATION ENVIRONMENT

The message passing paradigm requires recipient

identification and coexistence of the sender and receiver processes.

That is, the sender process of a piece of data must know the names

of its receiver processes (except in multicast communication), and the

receivers of the data must exist at the time the data is sent and in a

63

state that they can (or eventually can) receive the data. Otherwise, the

data is undeliverable. In contrast, the shared memory paradigm of

DSM provides a more flexible communication environment in which

the sender process need not specify the identity of the receiver

processes of the data. It simply places the data in the shared memory

and the receivers access it directly from the shared memory.

Therefore, the coexistence of the sender and receiver processes is

also not necessary in the shared memory paradigm. In fact, the

lifetime of the shared data is independent of the lifetime of any of its

receiver processes.

Exercises :

5.1 The distributed shared memory abstraction is implemented by

using the services of the underlying message passing

communication system. Therefore, in principle, the performance

of applications that the use DSM is expected to be worse than if

they use message passing directly. In spite of this fact, why do

some distributed operating system designers support the DSM

abstraction in their systems? Are there any applications that can

have better performance in a system with DSM facility than in a

system that has only message passing facility? If yes, give the

types of such applications. If no, explain why.

5.2 Discuss the relative advantages and disadvantages of using large

block size and small block size in the design of a blockbased

DSM system. Why do most DSM system designers prefer to use

the typical page size used in a conventional virtual memory

implementation as the block size of the DSM system?

5.3 It is often said that the structure of the shared memory space and

the granularity of data sharing in a DSM system are closely

related. Explain why?

5.4 What is false sharing? When is it likely to occur? Can this problem

lead to any other problem in a DSM system? Give reasons for

your answer.

5.5 What should be done to minimize the false sharing problem? Can

this problem be complete eliminated? What other problems may

occur if one tries to completely eliminate the false sharing

problem?

5.6 Discuss the relative advantages and disadvantages of using the

NRNMB, NRMB, RMB and RNMB strategies in the design of a

DSM system.

64

5.7 Discuss the relative advantages and disadvantages of the various

data locating mechanisms that may be used in a DSM system

that uses the NRMB strategy.

5.8 A sequentially consistent DSM system uses the RMB strategy. It

employs the write invalidate approach for updating data blocks

and the centralized server algorithm for locating the owner of a

block and keeping track of the nodes that currently have a valid

copy of the block. Write pseudocode for the implementation of

the memory coherence scheme of this DSM system.

5.9 Why is a global sequencer needed in a sequentially consistent

DSM system that employs the write update protocol?

5.10 Most DSM system in which caching is managed by the operating

system use the write invalidate scheme for consistency instead

of the write update scheme. Explain why?

5.11 Differentiate between weak consistency and release

consistency. Which of the two will you prefer to use in the design

of a DSM system? Give reasons for our answer.

5.12 A programmer is writing an application for a release consistent

DSM system. However the application needs sequential

consistency to produce correct results. What precautions must

the programmer take?

5.13 Differentiate between PRAM consistency and

 processor consistency.

5.14 Give the relative advantages and disadvantages of sequential

and release consistency models.

5.15 What is causal consistency? Give an example of an application

for which causal consistency is the most suitable consistency

model.

5.16 Propose a suitable replacement algorithm for a DSM system

whose shared memory space is structured as objects. One of

the goals in this case may be to minimize memory

fragmentation.

5.17 Why does the simple LRU policy often used for replacing cache

lines in a buffer cache not work well as a replacement policy for

replacement policy for replacing blocks in a DSM system?

5.18 To handle the issue of where to place a replaced block, the DSM

system of Memnet [Delp 1988] uses the concept of “home

memory”, in which each block has a home memory. When

replacement of a block requires that the block be transferred to

some other node’s memory, the block is transferred to the node

65

whose memory is the home memory for the block. What are the

advantages and disadvantages of this approach as compared to

the one presented in this chapter?

5.19 What are the main causes of thrashing in a DSM system? What

are the commonly used methods to solve the trashing problem

in a DSM system?

5.20 Complete transparency of a DSM system is compromised

somewhat when a method is used to minimize thrashing.

Therefore, the designer of a DSM system is of the opinion that

instead of using a method to minimize thrashing, a method

should be used by which the system automatically detects and

resolves this problem. Propose a method by which the system

can detect thrashing and a method to resolve it once it has been

detected.

5.21 A distributed system has DSM facility. The process scheduling

mechanism of this system selects another process to run when

a fault occurs for the currently running process, and the CPU is

utilized while the block is being fetched. Two systems

engineering arguing about how to better utilize the CPUs of this

system have the following opinions.

(a) The first one says that if a large number of processes are

scheduled for execution at a node, the available memory

space of the node can be distributed among these

processes so that almost always there will be a ready

process to run when a page fault occurs. Thus, CPU

utilization can be kept high.

(b) The second one says that if only a few processes are

scheduled for execution at a node, the available memory

space of the node can be allocated to each of the few

processes and each process will produce fewer page faults.

Thus, CPU utilization can be kept high. Whose argument is

correct? Give reasons for your answer.

5.22 What are the three main approaches for designing a

DSM system?

5.23 What are some of the issues involved in building a DSM

system on a network of heterogeneous machines?

Suggest suitable methods for handling these issues.

5.24 Are DSM systems suitable for both LAN and WAN

environments? Give reasons for your answer.

5.25 Suggest some programming practices that will reduce

network block faults in a DSM system.

66

5.26 Write pseudocode descriptions for handling a block fault

in each of the following types of DSM systems :

(a) A DSM system that uses the NRNMB strategy

(b) A DSM system that uses the NRMB strategy

(c) A DSM system that uses the RMB strategy

(d) A DSM system that uses the RNMB strategy

You can make any assumptions that you feel necessary, but you

feel necessary, but state the assumptions made.



6

SYNCHRONIZATION

Unit Structure:

6.1 Clock Synchronization

6.2 How Computer Clocks are implemented

6.3 Mutual Exclusion

6.4 Election Algorithms

6.5 Mutual Exclusion

Synchronization mechanisms that are suitable
 for distributed systems. In particular, the following
synchronization related issues are described :

• Clock synchronization

• Event ordering

• Mutual exclusion

• Deadlock

• Election algorithm

67

6.1 CLOCK SYNCHRONIZATION

Every computer needs a timer mechanism (called a computer

clock) to keep track of current time and also for various accounting

purposes such as calculating the time spent by a process in CPU

utilization, disk I/O and so on, so that the corresponding user can be

charged properly. In a distributed system, an application may have

processes that concurrently run on multiple nodes of the system. For

correct results, several such distributed applications require that the

clocks of the nodes are subchronised with each other. For example,

for a distributed on line reservation system to be fair, the only

remaining seat booked almost simultaneously from two different

nodes should be offered to the client who booked first, even if the time

different between the two bookings is very small. It may not be

possible to guarantee this if the clocks of the nodes of the system are

not synchronized. In a distributed system, synchronized clocks also

enable one to measure the duration of distributed activities that start

on one node and terminate on another node, for instance calculating

the time taken to transmit a message from one node to another at any

arbitrary time. It is difficult to get the correct result in the case if the

clocks of the sender and receiver nodes are not synchronized.

There are several other applications of synchronized clocks in

distributed systems. Some good examples of such applications may

be found in [Liskov 1993].

The discussion above shows that it is the job of a distributed

operating system designer to devise and use suitable algorithms for

properly synchronizing the clocks of a distributed system. This section

presents a description of such algorithms. However, for a better

understanding of these algorithms, we will first discuss how computer

clocks are implemented and what are the main issues in synchronizing

the clocks of a distributed system?

6.2 HOW COMPUTER CLOCKS ARE IMPLEMENTED

A computer clock usually consists of three components – a

quartz crystal that oscillates at a well – defined frequency, a counter

register, and a holding register. The holding register is used to store a

constant value that is decided based on the frequency of oscillation of

the quartz crystal. That is, the value in the counter register is

decremented by 1 for each oscillation of the quartz crystal. When the

value of the counter register becomes zero, an interrupt is generated

and its value is reinitialized to the value in the holding register. Each

interrupt is called clock tick. The value in the holding register is chosen

60 so that on 60 clock ticks occur in a second.

68

CMOS RAM is also present in most of the machines which

keeps the clock of the machine up-to-date even when the machine is

switched off. When we consider one machine and one clock, then

slight delay in the clock ticks over the period of time does not matter,

but when we consider n computers having n crystals, all running at a

slightly different time, then the clocks get out of sync over the period

of time. This difference in time values is called clock skew.

Tool Ordering of Events :

We have seen how a system of clocks satisfying the clock

condition can be used to order the events of a system based on the

happened before relationship among the events. We simply need to

order the events by the times at which they occur. However that the

happened before relation is only a partial ordering on the set of all

events in the system. With this event ordering scheme, it is possible
that two events a and b that are not related by the happened before

relation (either directly or indirectly) may have the same timestamps

associated with them. For instance, if events a and b happen

respectively in processes P1 and P2 , when the clocks of both

processes show exactly the same time (Say 100), both events will

have a timestamp of 100. In this situation, nothing can be said about

the order of the two events. Therefore, for total ordering on the set of

all system events an additional requirement is desirable. No two

events ever occur all exactly the same time. To fulfill this requirement,

Lamport proposed the use of any arbitrary total ordering of the

processes. For example, process identity numbers may be used to

break ties and to create a total ordering on events. For instance, in the

situation described above, the timestamps associated with events a

and b will be 100.001 and 100.002, respectively, where the process

identity numbers of processes P1 and P2 are 001 and 002 respectively.

Using this method, we now have a way to assign a unique timestamp

to each event in a distributed system to provide a total ordering of all

events in the system.

6.3 MUTUAL EXCLUSION

There are several resources in a system that must not be used

simultaneously by multiple processes if program operation is to be

correct. For example, a file must not be simultaneously updated by

multiple processes. Similarly, use of unit record peripherals such as

tape drives or printers must be restricted to a single process at a time.

Therefore, exclusive access to such a shared resource by a process

must be ensured. This exclusiveness of access is called mutual

exclusion between processes. The sections of a program that need

exclusive access to shared resources are referred to as critical

69

sections. For mutual exclusion, means are introduced to prevent

processes from executing concurrently within their associated critical

sections.

An algorithm for implementing mutual exclusion must

satisfy the following requirements :

Issues in Recovery from Deadlock :

Two important issues in the recovery action are selection of

victims and use of transaction mechanism. These are described

below.

Selection of Victim(s): In any of the recovery approaches described

above, deadlock is broken by killing or rolling back one or more

processes. These processes are called victims. Notice that even in

the operator intervention approach, recovery involves killing one or

more victims. Therefore, an important issue in any recovery procedure

is to select the victims. Selection of victim(s) is normally based on two

major factors:

1. Minimization of recovery cost : This factor suggests that those

processes should be selected as victims whose termination /

rollback will incur the minimum recovery cost. Unfortunately, it is

not possible to have a universal cost function, and therefore, each

system should determine its own cost function to select victims.

Some of the factors that may be considered for this purpose are

(a) the priority of the processes; (b) the nature of the processes,

such as interactive or batch and possibility of return with no ill

effects; (c) the number and types of resources held by the

processes; (d) the length of service already received and the

expected length of service further needed by the processes; and

(e) the total number of processes that will be affected.

2. Prevention of starvation : If a system only aims at minimization

of recovery cost, it may happen that the same process (probably

because its priority is very low) is repeatedly selected as a victim

and may never complete. This situation known as starvation, must

be somehow prevented in any practical system. One approach to

handle this problem is to raise the priority of the process every time

it is victimized. Another approach is to include the number of times

a process is victimized as a parameter in the cost function.

Use of Transaction Mechanism: After a process is killed or rolled

back for recovery from deadlock, it has to be return. However,

rerunning a process may not always be safe, especially when the

operations already performed by the process are non-idempotent. For

70

example, if a process has updated the amount of a bank account by

adding a certain amount to it, re-execution of the process will result in

adding the same amount once again, leaving the balance in the

account in an incorrect state. Therefore, the use of transaction

mechanism (which ensures all or no effect) becomes almost inevitable

for most processes when the system chooses the method of detection

and recovery for handling deadlocks. However, notice that the

transaction mechanism need not be used for those processes that can

be rerun with no ill effects. For example, rerun of a compilation

process has no ill effects because all it does is read a source file and

produce an object file.

6.4 ELECTION ALGORITHMS

• Several distributed algorithms require that there be a

coordinator process in the entire system that performs some

type of coordination activity needed for the smooth running of

other processes in the system. Two examples of such

coordinator processes encountered in this chapter are the

coordinator in the centralized algorithm for mutual exclusion

and the central coordinator in the centralized deadlock

detection algorithm.

• Since all other processes in the system have to interact with

the coordinator, they all must unanimously agree on who the

coordinator is. Furthermore, if the coordinator process fails due

to the failure of the site on which it is located, a new coordinator

process must be elected to take up the of the failed coordinator.

• Election algorithms are meant for electing to take coordinator

process from among the currently running processes in such a

manner that at any instance of time there is a single coordinator

for all processes in the system.

• Election algorithm are based on the following assumptions :

1. Each process in the system has a unique priority number.

2. Whenever an election is held, the process having the

highest priority number among the currently active

processes is elected as the coordinator.

3. On recovery, a failed process can take appropriate actions

to rejoin the set of active processes.

• Therefore, whenever initiated, an election algorithm basically

finds out which of the currently active processes has the

highest priority number and then informs this to all other active

71

processes. Different election algorithms differ in the way they

do this. Two such election algorithms are described below.

6.4.1 Bully Algorithm:

When any process notices that the coordinator is no longer

responding to the requests, it asks for the election.

Example: A process P holds an election as follows

1) P sends an ELECTION message to all the processes with

higher numbers.

2) If no one responds, P wins the election and becomes the

coordinator.

3) If one higher process answers; it takes over the job and P’s job

is done.

At any moment an “election” message can arrive to process

from one of its lowered numbered colleague. The receiving process

replies with an OK to say that it is alive and can take over as a

coordinator. Now this receiver holds an election and in the end all the

 processes give uo except one and that one is

 the new coordinator.

The new coordinator announces its new post by sending all the

processes a message that it is starting immediately and is the new

coordinator of the system.

If the old coordinator was down and if it gets up again; it holds

for an election which works in the above mentioned fashion. The

biggest numbered process always wins and hence the name

“bully” is used for this algorithm.

72

Figure 6.1: The bully election algorithm

a) Process 4 holds an election.

b) Process 5 and 6 respond, telling 4 to stop.

c) Now 5 and 6 each hold an election.

d) Process 6 tells 5 to stop.

e) Process 6 wins and tells everyone.

6.4.2 Ring Algorithm:

• It is based on the use of a ring as the name suggests. But this

doesnot use a toke. Processes are physically ordered in such

a way that every process knows its successor.

• When any process notices that the coordinator is no longer

functioning, it builds up an ELECTION message containing its

own number and passes it along the to its successor. If the

successor is down, then sender skips that member along the

ring to the next working process.

• At each step, the sender adds its own process number to the
list in the message effectively making itself a candidate to be
elected s the coordinator. At the end, the message gets back
to the process that started it.

• That process identifies this event when it receives an incoming

message containing its own process number. Then the same

message is changed as coordinator and is circulated once

again.

• Example: two process, Number 2 and Number 5 discover

together that the previous coordinator; Number 7 has crashed.

Number 2 and Number 5 will each build an election meaage

73

and start circulating it along the ring. Both the messages in the

end will go to Number 2 and Number 5 and they will convert

the message into the coordinator with exactly the same number

of members and in the same order. When both such messages

have gone around the ring, they both will be discarded and the

process of election will re-start.

Figure6.2: Election algorithm using Ring

6.5 MUTUAL EXCLUSION

Mutual exclusion (often abbreviated to mutex) algorithms are

used in concurrent programming to avoid the simultaneous use of a

common resource, such as a global variable, by pieces of computer

code called critical sections. A critical section is a piece of code in

which a process or thread accesses a common resource. The critical

section by itself is not a mechanism or algorithm for mutual exclusion.

A program, process, or thread can have the critical section in it without

any mechanism or algorithm which implements mutual exclusion.

Examples of such resources are fine-grained flags, counters or

queues, used to communicate between code that runs concurrently,

such as an application and its interrupt handlers. The synchronization

of access to those resources is an acute problem because a thread

can be stopped or started at any time. A mutex is also a common

name for a program object that negotiates mutual exclusion among

threads, also called a lock.

Following are the algorithms for mutual exclusion:

6.5.1 Centralized Algorithm

 Here one process is selected as the coordinator of the system with

the authority of giving access to other process for entering the

critical region. If any process wants to enter the critical, it has to

74

take the permission from the coordinator process. This

permission is taking by sending a REQUEST message.

Figure: 6.3:

a) Process 1 asks the coordinator for permission to enter a

critical region. Permission is granted.

b) Process 2 then asks permission to enter the same critical

region. The coordinator does not reply.

c) When process 1 exits the critical region, it tells the

coordinator, when then replies to process 2.

• As shown in figure 5.3-a), the coordinator is not reply to

process 2 when the critical region is occupied. Here, depending

on the type of system, the coordinator can also reply back to

the process 2 that it is in queue. If the coordinator doesn’t do

so, then the waiting process 2 will be unable to distinguish

between ‘permission denied” or a “dead” coordinator.

• This type of system as a single point of failure, if the coordinator

fails, then the entire system crashes.

6.5.2 Distributed Algorithm:

• A distributed algorithm for mutual exclusion is presented. No

particular assumptions on the network topology are required,

except connectivity; the communication graph may be

arbitrary. The processes communicate by using messages

only and there is no global controller. Furthermore, no process

needs to know or learn the global network topology. In that

sense, the algorithm is more general than the mutual exclusion

algorithms which make use of an a priori knowledge of the

network topology.

• When a process wants to enter a critical region, it builds a

message containing:

75

name of the critical
region it’s process
number it’s current time.

• The process sends this message to all the processes in the

network. When another process receives this message, it

takes the action pertaining on its state and the critical region

mentioned. Three cases are possible here:

1) If the message receiving process is not in the critical

region and does not wish to enter it, it sends it back.

2) Receiver is already in the critical region and does not

reply

3) Receiver wants to enter the same critical region and a

4) Has not done so, it compares the “time stamp” of the

incoming message with the one it has sent to others for

permission. The lowest one wins and can enter the

critical region.

• When the process exists from the critical region, it sends an

OK message to inform everyone.

Figure 6.4:

a) Two processes want to enter the same critical region at

the same moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, so 2 can

now enter the critical region.

• Disadvantage:

1) If one process crashes, it will fail to respond. Thus other

possesses will assume that the process is still working

76

in the critical region which will make other processes go

through a starvation.

2) Here each process must maintain the group

membership list that includes processes entering or

leaving the group.

3) Here all the processes are involved in all decisions; this

could lead to bottle neck when the numbers of

processes in the group are more.

4) This algorithm is comparatively expensive, slower and

complex.

6.5.3 Token Ring Algorithm:

• Here we have a bus network (e.g., Ethernet), with no inherent

ordering of the processes. In software, a logical ring is

constructed in which each process is assigned a position in the

ring. The ring positions may be allocated in numerical order of

network addresses or some other means. It does not matter

what the ordering is. All that matters is that each process

knows who is next in line after itself.

• When the ring is initialized, process 0 is given a token. The

token circulates around the ring. It is passed from process k to

process k +1 in point-to-point messages. When a process

acquires the token from its neighbour, it checks to see if it is

attempting to enter a critical region. If so, the process enters

the region, does all the work it needs to, and leaves the region.

After it has exited, it passes the token along the ring. It is not

permitted to enter a second critical region using the same

token. If a process is handed the token by its neighbour and is

not interested in entering a critical region, it just passes it along.

As a consequence, when no processes want to enter any

critical regions, the token just circulates at high speed around

the ring.

• The correctness of this algorithm is easy to see. Only one

process has the token at any instant, so only one process can

actually be in a critical region. Since the token circulates among

the processes in a well-defined order, starvation cannot occur.

Once a process decides it wants to enter a critical region, at

worst it will have to wait for every other process to enter and

leave one critical region.

77

• As usual, this algorithm has problems too. If the token is ever

lost, it must be regenerated. In fact, detecting that it is lost is

difficult, since the amount of time between successive

appearances of the token on the network is unbounded. The

fact that the token has not been spotted for an hour does not

mean that it has been lost; somebody may still be using it.

• The algorithm also runs into trouble if a process crashes, but

recovery is easier than in the other cases. If we require a

process receiving the token to acknowledge receipt, a dead

process will be detected when its neighbour tries to give it the

token and fails. At that point the dead process can be removed

from the group, and the token holder can throw the token over

the head of the dead process to the next member down the

line, or the one after that, if necessary. Of course, doing so

requires that everyone maintains the current ring configuration.

Figure 5.5:

a) An unordered group of processes on a network.

b) A logical ring constructed in software.

Exercises :

6.1 Write pseudocode for an algorithm that decides whether

a given set of clocks are synchronized or not. What input

parameters are needed in your algorithm?

6.2 How do clock synchronization issues differ in centralized

and distributed computing systems?

A resource manager schedules the processes in a distributed

system to make use of the system resources in such a manner that

resource usage, response time, network congestion, and scheduling

overhead are optimized. A varied of widely differing techniques and

methodologies for scheduling processes of a distributed system have

been proposed. These techniques can be broadly classified into three

types :

78

1. Task assignment approach, in which each process submitted by a

user for processing is viewed as a collection of related tasks and

these tasks are scheduled to suitable nodes so as to improve

performance.

2. Load-balancing approach, in which all the processes submitted by

the users are distributed among the nodes of the system so as to

equalize the workload among the nodes.

3. Load sharing approach, which simply attempts to conserve the

ability of the system to perform work by assuring that no node is

idle while processes wait for being processed.

Of the three approaches, the task assignment approach has

limited applicability in practical situations because it works on the

assumption that the characteristics of all the processes to be

scheduled are known in advance. Furthermore, the scheduling

algorithms that fall in this category do not normally take care of the

dynamically changing date of the system. Therefore, this approach will

be covered very briefly just to give an idea of now it works. Before

presenting a description of each of these techniques, the desirable

features of a good global scheduling algorithm are presented.

Exercise:

1) How do clock synchronization issues differ in centralized and

distributed computing systems?

2) What is a dead lock? What are the necessary condition which

lead to a dead lock?

3) Explain the Bully’s algorithm.

4) Explain the concept of logical clocks and their importance in

distributed systems.

5) Prove that an unsafe state is not a dead lock.

6) Explain the ring based algorithm.

7) What will happen if in a bully algorithm for electing a

coordinator when two or more processes almost

simultaneously discover that the coordinator has crashed.

8) Why are election algorithms needed is a distributed system?

9) How are false dead locks detected by the dead lock detection

systems?



79



7

RESOURCE MANAGEMENT-I

Unit Structure:

7.1 Desirable Features of a Good Global Schedules Algorithm

7.2 Task Assignment Approach

7.3 Process Migration

7.4 Desirable Features of a Good Process Migration

7.5 Load Sharing Approach

7.1 DESIRABLE FEATURES OF A GOOD GLOBAL

SCHEDULES ALGORITHM

7.1.1 No A Priori knowledge about the Processes:

A good process scheduling algorithm should operate with

absolutely no a priori knowledge about the processes to be executed.

Scheduling algorithms that operate based on the information about

the characteristics and resource requirements of the processes

normally pose an extra burden upon the users who must specify this

information while submitting their processes for execution.

7.1.2 Dynamic in Nature :

It is intended that a good process scheduling algorithm should

be able to take care of the dynamically changing load (or status) of the

various nodes of the system. That is, process assignment decisions

should be based on the current load of the system and not on some

fixed static policy. For this, sometimes it is also recommended that the

scheduling algorithm should possess the flexibility to migrate a

process more than once because the initial decision of placing a

process on a particular node may have to be changed after some time

to adapt to the new system load. This feature may also require that

the system support preemptive process migration facility in which a

process can be migrated from one node to another during the course

of its execution.

7.1.3 Quick Decision Making Capability :

80

A good process scheduling algorithm must make quick

decisions about the assignment of processes to processors. This is

an extremely important aspect of the algorithms and makes many

potential solutions unsuitable. For example, an algorithm that models

the system by a mathematical program and solves it on line is

unsuitable because it does not meet this requirement. Heuristic

methods requiring less computational effort while providing near

optimal results are therefore normally preferable to exhaustive

(optimal) solution methods.

7.1.4 Balanced System Performance and Scheduling Overhead

Several global scheduling algorithms collect global state

information and use this information in making process assignment

decisions. A common intuition is that greater amounts of information

describing global system state allow more intelligent process

assignment decisions to be made that have a positive affect on the

system as a whole. In a distributed environment, however, information

regarding the state of the system is typically gathered at a higher cost

than in a centralized system. The general observation is that, as

overhead is increased in an attempt to obtain more information

regarding the global state of the system, the usefulness of that

information is decreased due to both the aging of the information being

gathered and the low scheduling frequency as a result of the cost of

gathering and processing that information. Hence algorithms that

provide near optimal system performance with a minimum of global

state information gathering overhead are desirable.

7.1.5 Stability :

A scheduling algorithm is said to be unstable if it can enter a

state in which all the nodes of the system are spending all of their time

migrating processes without accomplishing any useful work in an

attempt to properly schedule the processes for better performance.

This form of fruitless migration of processes is known as processor

thrashing. Processor thrashing can occur in situations where each

node of the system has the power of scheduling its own processes

and scheduling decisions either are made independently of decisions

made by other processors or are based on relatively old data de to

transmission delay between nodes. For example, it may happen that

node n1 and n2 both observe that node n3 is idle and then both offload

a portion of their work to node n3 without being aware of the offloading

decision made by the other. Now if node n3 becomes overloaded due

to the processes received fro both nodes n1 and n2 , then it may again

start transferring its processes to other nodes. This entire cycle may

81

be repeated again and again, resulting in an unstable state. This is

certainly not desirable for a good scheduling algorithm.

7.2 TASK ASSIGNMENT APPROACH

7.2.1 The Basic Idea:

In this approach, a process is considered to be composed of

multiple tasks and the goal is to find an optimal assignment policy for

the tasks of an individual process. Typical assumptions found in task

assignment work are as follows :

• A process has already been split into pieces called tasks. This

split occurs along natural boundaries, so that each task will

have integrity in itself and data transfers among the tasks will

be minimized.

• The amount of computation required by each task and the

speed of each processor are known.

• The cost of processing each task on every node of the system

is known. This cost is usually derived based on the information

about the speed of each processor and the amount of

computation required by each task.

• The Interprocesses Communication (IPC) costs between every

pair of tasks is known. The IPC cost of considered zero

(negligible) for tasks assigned to the same node. They are

usually estimated by an analysis of the static program of a

process. For example during the execution of the process, if
two tasks communicate n times and average time for each

intertask communication is t, the intertask communication cost

for the two tasks is n t .

• Other constraints, such as resource requirements of the tasks

and the available resources at each node, precedence

relationships among the tasks, and so on, are also known.

• Reassignment of the tasks is generally not possible.

With these assumptions, the task assignment algorithms seek

to assign the tasks of a process to the nodes of the distributed system

in such a manner so as to achieve goals such as the following.

• Minimization of IPC costs

• Quick turnaround time for the complete process

• A high degree of parallelism

• Efficient utilization of system resources in general

82

7.3 PROCESS MIGRATION

Process migration is the relocation of a process from its current

location (the source node) to another node (the destination node). The

flow of execution of a migrating process is illustrated in Figure 7.1.

Source
 node Destination

Fig 7.1 : Flow of execution of a migrating process

A process may be migrated either before it starts executing on

its source node on during the course of its execution. The former is

known as nonpreemptive process migration, and the latter is known

as preemptive process migration. Preemptive process migration is

costlier than non-preemptive process migration since the process

environment must also accompany the process to its new node for an

already executing process.

Process migration involves the following major steps :

1. Selection of a process that should be migrated.

2. Selection of the destination node to which the selected process

should be migrated

3. Actual transfer of the selected process to the destination node.

The first two steps are taken care of by the process migration

policy and the third step is taken care of by the process migration

mechanism. The policies for the selection of a source node, a

destination node, and the process to be migrated on resource

management.

Time

Execution
suspended

Process in

execution

P 1

Transferof
control

node

Freezing
time

Execution

Process in

execution

P 1

resumed

83

7.4 DESIRABLE FEATURES OF A GOOD PROCESS

MIGRATION

A good migration mechanism must process transparency,

minimal interferences, minimal residue dependencies, efficiency,

robustness, and communication between co-processes.

7.4.1 Transparency:

Transparency is an important requirement for a system that

supports process migration. The following levels of transparency can

be identified :

1. Object access level : Transparency at the object access level is

the minimum requirement for a system to support non – preemptive

process migration facility. If a system supports transparency at the

object access level, access to objects such as files and devices can

be done in a location independent manner. Thus, the object access

level transparency allows free initiation of programs at an arbitrary

node. Of course, to support transparency at object access level, the

system must provide a mechanism for transparent object naming and

locating.

System cal and interprocess communication level. So that a

migrated process does not continue to depend upon its originating

node after being migrated. It is necessary that all system calls,

including interprocess communication, are location independent.

Thus, transparency at this level must be provided in a system that is

to support preemptive process migration facility. However, system

calls to request the physical properties of a node need not be location

independent.

Transparency of interprocess communication is also the

transparent redirection of messages during the transient state of

process that recently migrated. That is, once a message sent, it should

reach its receiver process without the need for resending a from the

sender node is sure the receiver process moves to another node

before the message is received.

7.4.2 Minimal Interference :

Migration of a process should cause minimal interference to the

progress of the process involved the system as a whole. One method

to achieve this is by minimizing the freezing time of the process being

84

migrated. Freezing time is defined as the time period for which the

execution of the process is stopped for transferring its information to

the destination node.

7.4.3 Minimal Residual Dependencies:

No residual dependency should be left on the previous node.

That is, a migrated process should not in any way continue to depend

on its previous node once it has started executing on its new node

since, otherwise, the following will occur.

It may be noted that in the model described above, the tasks of

a process were assigned to the various nodes of the system. This

model may be generalized to the general task assignment problem in

which several processes are to be assigned. In this case, each

process is treated to be a task of the process force and the inter-

process communication costs are assumed to be known.

Several extensions to the basic task assignment model

described above have been proposed in the literature. In addition to

the task assignment cost and the inter-task communication cost

parameters of the basic task assignment model, the extended models

take into account to her parameters such as memory size

requirements of the task and memory size constraint of the

processors, precedence relationship among the tasks, and so on.

However, we will not discuss this topic any further because of the

limited applicability of the task assignment approach in practical

situations.

7.4.4 Load Balancing Approach :

The scheduling algorithms using this approach are known as

load balancing algorithms or load leveling algorithms. These

algorithms are based on the intuition that, for better resource

utilization. It is desirable for the load in a distributed system to be

balanced evenly. Thus, a load balancing algorithm tries to balance the

total system load by transparently transferring the workload from

heavily loaded nodes to lightly nodes in an attempt to ensure good

overall performance relative to some specific metric of system

performance. When considering performance from the user point of

view, the metric involved is often the response time of the processes.

However, when performance is considered from the resources point

of view, the metric involved is the total systems throughput. In contrast

to response time, throughput is concerned with seeing that all users

are treated fairly and that all are making progress. Notice that the

resource view of maximizing resource utilization is compatible with the

desire to maximize system throughput. Thus the basic goal of almost

85

all the load balancing algorithms is to maximize the total system

throughput.

7.4.5 Taxonomy of Load Balancing Algorithms :

The taxonomy presented here is a hierarchy of the features of

load balancing algorithms. The structure of the taxonomy is shown in

Figure. To describe a specific load balancing algorithm, a taxonomy

user traces paths through the hierarchy. A description of this

taxonomy is given below.

7.4.6 Static Versus Dynamic :

At the highest level, we may distinguish between static and

dynamic load balancing algorithms. Static algorithms use only

information about the average behaviour of the system, ignoring the

current state of the system. On the other hand, dynamic algorithms

react to the system state that changes dynamically.

7.4.7 Migration Limiting Policies :

Another important policy to be used by a distributed operating

system that supports process migration is to decide about the total

number of times a process should be allowed to migrate. One of the

following two policies may be used for this purpose.

Uncontrolled : In this case, remote process arriving at a node is

treated just as a process originating at the node. Therefore, under this

policy, a process may be migrated any number of times. This policy

has the unfortunate property of causing instability.

Controlled : To overcome the instability problem of the uncontrolled

policy, most systems treat remote processes different from local

processes and use a migration count parameter to fix a limit on the

number of times that a process may migrate. Several system

designers feel that process migration is an expensive operation and

hence a process should not be allowed to migrate too frequently.

Hence this group of designers normally favors an irrevocable

migration policy. That is, the upper limit of the value of migration count
is fixed to t, and hence a process cannot be migrated more than once

under this policy. However, some system designers feel that multiple

process migrations, especially for long processes, may be very useful

for adapting to the dynamically changing states of the nodes. Thus

this group of designers sets the upper limit of the value of migration

count to some value k 1. The value of k may be decided either

statically of dynamically. Its value may also be different for processes

86

having different characteristics. For example, a long process (a

process whose execution time is large) may be allowed to migrate

more times as compared to a short process.

7.5 LOAD SHARING APPROACH

Several researchers believe that load balancing with its

implication of attempting to equalize workload on all the nodes o the

system, is not an appropriate objective. This is because the overhead

involved in gathering state information to achieve this objective is

normally very large, especially in distributed systems having a large

number of nodes. Moreover, load balancing in the sense is not

achievable because the number of processes in a node is always

fluctuating and the temporal unbalance among the nodes exists at

every moment, even if the static (average) load is perfectly balanced

for the proper utilization the resources of a distributed system, it is not

required to balance the load on all the nodes. Rather, it is necessary

and sufficient to prevent the nodes from being idle while some other

nodes have more than two processes. Therefore this rectification is

often called dynamic load sharing instead of dynamic load balancing.

7.5.1 Issues in Designing Load Sharing Algorithms :

Similar to the load balancing algorithms, the design of a load

sharing algorithm also requires that proper decisions be made

regarding load estimation policy, process transfer policy, state

information exchange policy, location policy, priority assignment

policy, and

with threads facility, a process having a single thread corresponds to

a process of a traditional operating system. Threads are often referred

to as lightweight processes and traditional processes are referred to

as heavyweight processes.

7.5.2 Motivations for Using Threads :

The main motivations for using a multithreaded process

instead of multiple single threaded processes for performing some

computation activities are as follows :

1. The overheads involved in creating a new process are in general

considerably greater than those of creating a new thread within a

process.

2. Switching between threads sharing the same address space is

considerably cheaper than switching between processes that have

their own address space.

87

3. Threads allow parallelism to be combined with sequential

execution and blocking system calls. Parallelism improves

performance and blocking system calls make programming easier

make programming easier.

4. Resource sharing can be achieved more efficiently and naturally

between threads of a process than between processes because

all threads of a process share the same address space.

These advantages are elaborated below:

The overheads involved in the creation of a new process and

building its execution environment are liable to be much greater than

creating a new thread within an existing process. This is mainly

because when a new process is created its address space has to be

created from scratch, although a part of it might be inherited from the

process’s parent process. However, when a new thread is created, it

uses the address space of its process that need not be created from

scratch. For instance, in case of a kernel supported virtual memory

system, a newly created process will incur page faults as date and

instructions are referenced for the first time. Moreover, hardware

caches will initially contain no data values for the new process, and

cache entries for the process’s data will be created as the process

executes. These overheads may also occur in thread creation, but

they are liable to be less. This is because when the newly created

thread accesses code and data that have recently been accessed by

other threads within the process, it automatically takes advantage of

any hardware or main memory caching that has taken place.

Threads also minimize context switching time, allowing the

CPU to switch from one unit of computation to another unit of

computation with minimal overhead. Due to the sharing of address

space and other operating system resources among the threads of a

process, the overhead involved in CPU switching among peer threads

is very small as compared to CPU switching among processes having

their own address spaces. This is the reason why threads are called

lightweight processes.

True file service: It is concerned with the operation on individual files,

such operations for accessing and modifying the data in files and for

creating and deleting. To perform these primitive file operations

correctly and efficiently, typical design issues of a true file service

component include file accessing mechanism, file sharing semantics,

file caching mechanism, file replication mechanism, concurrency

control mechanism, data consistency and multiple copy update

protocol, and access control mechanism. Note that the separation of

the storage service from the true file service makes it easy to combine

88

different methods of storage and different storage media in a single

file system.

Name service : IT provides a mapping between text names for files

and references to files, that is, file IDs. Text names are required

because, file IDs are awkward and difficult for human users to

remember and use. Most file systems use directories to perform this

mapping. Therefore, the name service is also known as a directory

service. The directory service is responsible for performing directory

related activities such as creation and deletion of directories, adding a

new file to a directory deleting a file from a directory, changing the

name of a file, moving a file from one directory to another, and so on.

The design and implementation of the storage service of a

distributed file system is similar to that of the storage service of a

centralized file system. Readers interested in the details of the storage

service may refer to any good book on operating systems. Therefore,

this chapter will mainly deal with the design and implementation issues

of the true file service component of distributed file systems.

Exercise:

1) What are the issues in designing Load –

Balancing algorithms?

2) Discuss the features of a Local Scheduling algorithm?

3) Why are heuristic methods that provide near optimal results

preferred over optimal solution methods in scheduling

algorithms?

4) Discuss the practical applicability of the load-balancing

approach as a scheduling scheme.

5) Load – balancing in a strictest sense is not achievable in

distributed systems. Justify?



8

RESOURCE MANAGEMENT -II

Unit Structure:

89

8.1 Features of a Good Distributed File System

8.2 File Models

8.3 File Accessing Models

8.4 File Sharing Semantics

8.1 FEATURES OF A GOOD DISTRIBUTED FILE

SYSTEM

A good distributed file system should have the features

described below.

1. Transparency : The following four types of transparencies are

desirable :

Structure transparency : Although not necessary, for

performance, scalability and reliability reasons, a distributed file

system normally uses multiple file servers. Each file server is

normally a user process or sometimes a kernel process that is

responsible for controlling a set of secondary storage device (used

for file storage) of the node on which it runs. In multiple file servers,

the multiplicity of file servers should be transparent to the clients

of a distributed file system. In particular, clients should not know

the number or locations of the file servers and the storage devices.

Ideally, a distributed file system should look to its clients like a

conventional file system offered by a centralized, time-sharing

operating system.

Different file systems use different conceptual models of a file.

The two most commonly used criteria for file modeling are structure

and modifiability. File models based on these criteria are described

below :

8.2.1 Unstructured and Structured Files :

According to the simplest model, a file is an unstructured

sequence of data. In this model, there is no substructure known to the

of each file of the file system appears to the file server as an

uninterrupted sequence of bytes. The operating system is not

interested in the information stored in the files, the interpretation of the

meaning and structure of the data stored in the files are entirely up to

the application programs. UNIX and MS-DOS use this fie model.

8.2 FILEMODELS

90

Another file model that is rarely used nowadays is the

structured file model. In this model, a file appears to the file server as

an ordered sequence of records. Records of different files of the same

file system can be of different size. Therefore, many types of files exist

in a file system, each having different properties. In this model a record

is the smallest unit of file data that can be accessed, and the files

system read or write operations are carried out on a set of records.

Structured files are again of two types – files with nonindexed

records and files with indexed records. In the former model, a file

record is accessed by specifying its position within the file, for

example, the fifth record from the beginning of the file or the second

record from the end of the file. In the latter model, records have one

or more key fields and can be addressed by specifying the values of

the key fields. In file systems that allow indexed records, a file is

maintained as a B-tree or other suitable data structure or a hash able

is used to locate records quickly.

Most modern operating systems use the unstructured file

model. This is mainly because sharing of a file by different applications

is easier with the unstructured file model as compared to the

structured file model. Since a file has no structure in the unstructured

model, different applications can interpret the contents of a file m

different ways.

In addition to data items, files also normally have attributes. A

file’s attributes are information describing that file. Each attribute has

a name and a value. For example, typical attributes of a file may

contain information such as owner, size, access permissions, date of

creation, date of last modification, and date of last access. Users can

read and update some of the attribute values using the primitives

provided by the file system. Notice, however, that although a user may

update the value of any attribute, not all attributes are user modifiable.

For example, a user may update the value of the access permission

attribute, but he or she cannot change the value of the size or date of

creation attributes. The types of attributes that can be associated with

a file are normally fixed by the file system. However, a file system may

be designed to provide the flexibility to create and manipulate user

defined attributes in addition to those supported by the file system.

File attributes are normally maintained and used by the

directory service because they are subject to different access controls

than the file they describe. Notice that although file attributes are

maintained and used by the directory service, they are store with the

corresponding file rather than with the file name in the directory. This

is mainly because many directory systems allow files to be referenced

by more than one name.

91

8.2.2 Mutable and Immutable Files :

According to the modifiability criteria, files are of two types –

mutable and immutable. Most existing operating systems use the

mutable file model. In this model, an update performed on a file

overwrites on its old contents to produce the new contents. That is, a

file is represented as a single stored sequence that is altered by each

update operation.

On the other hand, some more recent file systems, such as the

Cedar File System (CFS), use the immutable file model. In this model,

a file cannot be modified once it has been created except to be

deleted. The file versioning approach is normally used to implement

file updates, and each file is represented by a history of immutable

versions. That is, rather than updating the same file, a new version of

the file is created each time a change is made to the file contents and

the old version is retained unchanged. In practice, the use of storage

space may be reduced by keeping only a record of the differences

between the old and new versions rather than creating the entire file

once again.

Gifford et al. emphasized that sharing only immutable files

makes it easy to support consistent sharing. Due to this feature, it is

much easier to support file caching and replication in a distributed

system with the immutable file model because it eliminates all the

problems associated with keeping multiple copies of a file consistent.

However, due to the need to keep multiple versions of a file, the

immutable file mode, suffers from two potential problems – increased

use of disk space and increased disk allocation activity. Some

mechanism is normally used to prevent the desk space from filling

instantaneously.

8.3 FILE ACCESSING MODELS

The manner in which a client’s request to access a file is

serviced depends on the file accessing model used by the file system.

The file accessing model of a distributed file system mainly depends

on two factors – the method used for accessing remote files and the

unit of data access.

Byte level transfer model : In this model, file data transfers across

the network between a client and a server take place in units of bytes.

This model provides maximum flexibility because it allows storage and

retrieval of an arbitrary sequential subrange of a file, specified by an

offset within a file, and a length. The main drawback of this model is

the difficulty in cache management due to the variable length data for

92

different access requests. The Cambridge File Server [Dion 1980,

Mitchell and Dion 1982, Needham and Herbert 1982] uses this model.

Record level transfer mode : The three file data transfer models

described above are commonly used with unstructured file models.

The record level transfer model is suitable for use with those file

models in which file contents are structured in the form of records. In

this model, file data transfers across the network between a client and

a server take place in units of records. The Research Storage System

(RSS) [Gray 1978 Gray et al. 1981], which supports complex access

methods to structured and indexed files, uses the record level transfer

mode.

8.4 FILE SHARING SEMANTICS

A shared file may be simultaneously accessed by multiple

users. In such a situation, an important design issue for any file system

is to clearly defined when modifications of file data made by a user are

observable by other users. This is defined by the type of file sharing

semantics adopted by a file system

1. UNIX semantics : this semantics enforces an absolute time

ordering on all operations and ensures that every read operation on a

file sees the effects of all previous write operations performed on that

file [Fig. 8.1(a)]. In particular, writes to an open file by a user

immediately become visible to other users who have this file open at

the same time.

 Original file
contentsRetrieved filecontents Retrieved filecontents

a b

a b c

a b c d e

a b c a b d a b c d e

New file New file New file contents contents contents

t1< t2<t3<t4<t5<t6

Append(c) Read Append(d) Append(e)
Time

Read

t 1 2 3 4 5 6 t t t t t

93

3

(b)

Fig. 8.1 : (a) Example of UNIX file sharing semantics; (b) an

example explaining why it is difficult to achieve UNIX semantics

in a distributed file system even what the shared file is handled

by a single server

The UNIX semantics is commonly implemented in file systems

for single processor systems because it is the most desirable

semantics and also because it is easy to serialize all read/write

requests. However, implementing UNIX semantics in a distributed file

system is not an easy task. One may think that this semantics can be

achieved in a distributed system by disallowing files to be cached at

client nodes and allowing a shared file to be manage by only one file

server that processes all read and write requests for the file strictly in

the order in which it receives them. However, even with this approach,

there is a possibility that, due to network delays, client requests from

different nodes may arrive and get processed at the server node in an

order different from the actual order in which the requests were made.

Furthermore, having all fie access requests processed by a single

server and disallowing caching on a client nodes is not desirable in

practice due to poor performance, poor scalability, and poor reliability

of the distributed file system. Therefore, distributed file systems

normally implement a more relaxed semantics of file sharing.

Applications that need to guarantee UNIX semantics for correct

94

functioning should use special means (e.g. locks) for this purpose and

should not rely on the underlying semantics of sharing provided by the

file system.



9

DISTRIBUTED FILE SYSTEM (Cont)

Unit Structure:

9.1 File caching Scheme

9.2 Fault Tolerance

9.3 Design Principles

9.1 FILE CACHING SCHEME

File caching has been implemented in several file systems for

centralized time sharing systems to improve file I/O performance. The

idea in file caching in these systems is to retain recently accessed file

data in main memory, so that repeated accesses to the same

information can be handled without additional disk transfers. Because

of locality in file access patterns, file caching reduces disk transfers

substantially, resulting in better overall performance of the file

systems. The property of locality in file access patterns can as well be

exploited in distributed systems by designing a suitable file caching

scheme. In addition to better performance, a file caching scheme for

a distributed file system may also contribute to its scalability and

reliability because it is possible to cache remotely located data on a

client node. Therefore, every distributed file system in serious use

today uses some form of file caching. Even AT & T’s Remote File

System (RFS) which initially avoided caching to emulate UNIX

semantics, now uses it.

95

In implementing a file caching scheme for a centralized file

system one has to make several key decisions, such as the granularity

of cached data (large versus small), cache size (large versus small,

fixed versus dynamically changes, and the replacement policy. A good

summary of these design issues is presented in [Smith 1+82]. In

addition to these issues, a file caching scheme for a distributed file

system should also address the following key decisions :

1. Cache location

2. Modification propagation

3. Cache validation

These three design issues are described below.

9.1.1 Cache Location :

Cache location refers to the place where the cached data is

stored. Assuming that the original location of a file is on its server’s

disk, there are three possible cache locations in a distributed file

system.

In this approach, a read quorum of r votes is collected to read

a file and a write quorum of w votes to write a file. Since the votes

assigned to each copy are not the same, the size of a read / write

quorum depends on the copies selected for the quorum. The number

of copies in the quorum will be less if the number of votes assigned to

the selected copies is relatively more. On the other hand, the number

of copies in the quorum will be more if the number of votes assigned

to the selected copies is relatively less. Therefore, to guarantee that

there is a non-null intersection between every read quorum and every
write quorum, the values of r and w are chosen such that r + w is

greater than the total number of votes (v) as to the file r w v .
Here, v is the sum of the votes of all the copies of the file.

9.1.2 Modification Propagation:

In the file system in which the cache is located on clients’ node;

a file’s data may simultaneously be cached on multiple nodes. In such

a situation, when cache of all these nodes contains exactly the same

copy of the file data, we say that the caches are consistent. It is

possible for the cache to become inconsistent provided the file data is

modified by one of the clients’ and the corresponding data cached at

the other nodes are not changed or discarded.

Keeping file data cached at multiple client nodes consistent is

an important design issue in those distributed file systems that use

96

client caching. A variety of approaches handle this issue have been

proposed and implemented. These approaches depend on the

schemes used for the following cache design for distributed file

system.

1) When to propagate modifications made to a cached data to

corresponding file server.

2) How to verify the validity of cached data.

9.1.3 Cache Validation Scheme:

A file data may simultaneously reside in the cache of multiple

nodes. The modification propagation policy only specifies when the

master copy of a file at a server node is updated upon modification of

a cache entry.

It does not tell anything about when the file data residing in the

cache of other nodes was updated.

As soon as other nodes get updated, the client’s data become

outdated or stale. Thus the consistency of the clients’ cache has to be

checked and must be consistent with the master copy of the data.

Validation is done in two ways:

1) Client initiated approach:

Here client checks for new updates before it accesses its data
or it goes with the periodic checking mechanism i.e. client
checks for updates after regular intervals of time. Here the
pull mechanism is implemented where the client Pulls for
updates.

2) Server initiated approach:

Here the server is responsible for sending periodic updates to
all its clients. The Push protocol is user where she server
pushes the new updates to all its clients.

9.2 FAULT TOLERANCE

Fault tolerance is an important issue in the design of a

distributed file system. Various types of faults could harm the integrity

of the data stored by such a system. For instance, a processor loses

the coments of its main memory in the event of a crash. Such a failure

could result in logically complete but physically incomplete file

operations, making the data that are stored by the file system

inconsistent. Similarly, during a request processing, the server or

client machine may crash, resulting in the loss of state information of

the file being accessed. This may have an uncertain effect on the

97

integrity of file data. Also, other adverse environmental phenomena

such as transient faults (caused by electromagnetic fluctuations) or

decay of disk storage devices may result in the loss or corruption of

data stored by a file system. A portion of a disk storage device is said

to be ‘decay’. The data on that portion of the device are irretrievable.

The primary file properties that directly influence ability of a

distributed file system to tolerate faults are as follows.

1. Availability : Availability of a file refers to the fraction of time for

which the file is available for use. Note that the availability property

depends on the location of the file and the locations of its clients

(users). For example, if a network is partitioned due to a

communication link failure, a file may be available to the clients of

some nodes, but at the same time, it may not be available to the

clients of other nodes. Replication is a primary mechanism for

improving the availability of a file.

2. Robustness : Robustness of a file refers to its power to survive

crashes of the storage device and decays of the storage medium

on which it is stored. Storage devices that are implemented by

using redundancy techniques, such as stable storage device, are

often used to store robust files. Note that a robust file may not be

available until the faulty component has been recovered.

Furthermore, unlike availability, robustness is independent of

either the location of the file or the location of its clients.

On the other hand, if a failure occurs that causes a

subtransaction to abort before its completion, all of its tentative

updates are undone, and its parent is notified. The parent may then

choose to continue processing and try to complete its task using an

alternative method or it may abort itself. Therefore, the abort of a

subtransaction may not necessarily cause its ancestors to abort.

However, if a failure causes an ancestor transaction to abort, the

updates of all its descendant transactions (That have already

committed) have to be undone. Thus no updates performed within an

entire transaction family are made permanent until the top level

transaction commits. Only after the top level transaction commits is

success reported to the client.

9.2.1 Advantages of Nested Transactions :

Nested transactions facility is considered to be an important
extension to the traditional transaction facility
 (especially in distributed system) due to its following main
advantages:

1. It allows concurrency within a transaction. That is a transaction

may generate several subtransactions that run in parallel on

98

different processors. Notice that all children of a parent transaction

are synchronized so that the parent transaction still exhibits

serializability.

2. It provides greater protection against failures, in that it allows

checkpoints to be established within a transaction. This is because

the subtransactions of a parent transaction fail independently of

the parent transaction and of one teacher. Therefore, when a

subtransaction aborts, its parent can still continue and may fork

alternative subtransaction in place of the failed subtransaction in

order to complete its task.

9.3 DESIGN PRINCIPLES

Based on his experience with the AFS and other distributed file

systems, Satyanarayanan [1992] has stated the following general

principles for designing distributed file systems :

1. Clients have cycles to burn : This principle says that, if possible,

it is always preferable to perform an operation on a client’s own

machine rather than performing it on a server machine. This is

because server is a common resource for all clients, and hence

cycles of a server machine are more precious than the cycles of

client machines. This principle aims at enhancing the scalability of

the design, since it lessens the need to increase centralized

(commonly used) resources and allows graceful degradation of

system performance as the system grows in size.

2. Cache whenever possible : Better performance, scalability, user

mobility, etc autonomy motivate this principle. Caching of data at

clients’ sites frequently to improve overall system performance

because it makes data available wherever it is being currently

used, thus saving a large amount of computing time and network

bandwidth. Caching also enhances scalability because it reduces

contention on centralized resources.

3. Exploit usage properties : This principle says that, depending on

usage properties (access and modification patterns), files should

be grouped into a small number of easily identifiable classes, and

then class specific properties should be exploited for independent

optimization for improved performance. For example, files known

to be frequently read and modified only once in a while can be

treated as immutable files for read only replication. Files containing

the object code of system programs are good candidates for this

class.

Notice that the use of different mechanisms for handling files

belonging to different classes for improved performance makes

99

the design of a file system complex. Hence, for simplicity of design,

some designers prefer the single mechanism for handling all files.

4. Minimize system-wide knowledge and change : This principle

is aimed at enhancing the scalability of design. The larger is a

distributed system, the more difficult it is to be aware at all times

of the entire state of the system and to update distributed or

replicated data structures in consistent manner. Therefore

monitoring or automatically updating of global information should

be avoided as far as practicable. The callback approach for cache

validation and the use of negative rights in an access control list

(ACL) based access control mechanism are two instances of the

application of this principle. The use of hierarchical system

structure is also an application of this principle.

5. Trust the fewest possible entities : This principle is aimed at

changing the security of the system. For example, it is much

simpler to ensure security based on the integrity of the much

smaller number of servers rather than trusting thousands of

clients. In this case, it is sufficient to only ensure the physical

security of these servers and the software they run.

6. Batch if possible : Parching often helps in improving performance

greatly. For example, grouping operation together can improve

throughput, although it is often at the cost of latency. Similarly

transfer of data across the network in large chunks rather than as

individual pages in much more efficient. The full file transfer

protocol is an instance of the application of this principle.

Exercise:

1) In what aspects is t6he design of a distributed file system different

from that of a file system for a centralized time-sharing system?

2) Name the main components of a distributed file system. What

might be the reason for separating the various functions of a

distributed file system into these components?

3) In the design of the distributed file system, high availability and

high scalability are mutually related properties. Discuss.

4) Discuss the advantages and disadvantages of using full0file

caching and block caching models for data-caching mechanism of

a distributed file system.

5) What is a transaction? What are the two main factors that threaten

the atomicity of transactions? Describe how atomicity is ensured

for a transaction in both commit and abort.

6) Why are transaction models needed in a file system? Give

example.

100

7) What is transaction deadlock? Give examples to justify and

support your answer.

8) What is false sharing?



10

NAMING

Unit Structure:

10.1 Desirable Features for a Good Naming System

10.2 Source Routing Name

10.3 System Oriented Names

10.4 Name Caches

10.5 On-Use Update

10.1 DESIRABLE FEATURES FOR A GOOD NAMING

SYSTEM

A good naming system or a distributed system should have the

features described below.

1. Location transparency : Location transparency means that the

name of an object should not reveal any hint as to the physical

location of the object. That is, an object’s name should be

independent of the physical connectivity or topology of the system,

or the current location of the object.

2. Location independency : For performance, reliability, availability

and security reasons, distributed systems provide the facility of

object migration that allows the movement and relocation of

objects dynamically among the various nodes of a system.

Location independency means that the name of an object need

not be changed when the object’s location changes. Furthermore,

a user should be able to access an object by its same name

irrespective of the node from where he or she accesses it.

Therefore, the requirement of location independency calls for a

global naming faculty with the following two features :

101

• An object at any node can be accessed without the knowledge

of its physical location (location independency of request

receiving objects).

• An object at any node can issue an access request without the

knowledge of its own physical location (location independency

of request issuing objects). This property is also known as user

mobility.

A location independency naming system must support a dynamic

mapping scheme so that it can map the same object name to

different locations at two different instances of time. Therefore,

location independency is a stronger property than location

transparency.

3. Scalability : Distributed systems vary in size ranging from one

with a few nodes to one with many nodes. Moreover, distributed

systems are normally open systems, and their size changes

dynamically. Therefore, it is impossible to have an a priori idea

about how large the set of names to be dealt with is liable to get.

Hence a naming system must be capable of adapting to the

dynamically changing scale of a distributed system that normally

leads to a change in the size of the name space. That is, a change

in the system scale should not require any change in the naming

or locating mechanisms.

4. Uniform naming convention : In many existing systems, different

ways of naming objects, called naming conventions, are used for

naming different types of objects. For example, filenames typically

differ from user names and process names. Instead of using such

non-uniform naming conventions, a good naming system should

use the same naming convention for all types of objects in the

system.

Note that an attribute value may be the same for several

objects, but if all considered together refer to a single object.

Moreover, it is not always necessary that all the attributes of a naming

convention to identify an object. Attribute based naming systems

usually work based on the idea that a query must supply enough

attributes so that the target object can be uniquely identified. Also

notice that in a partitioned name space using descriptive naming

convention, domains can be arranged in any arbitrary manner.

Multicast or group naming facility can be easily provided with

attribute based naming by constructing an attribute for a list of names.

Group names are particularly useful in forming mail distribution lists

and access control lists.

102

10.2 SOURCE ROUTING NAME

Many name spaces mirror the structure of the underlying

physical network. When the structure of a name space has the same

form as the underlying network of a distributed system, the name

space defines source routing anmes. A source routing name identities

a path through the network of a distributed system. The UNIX-to-UNIX

Copy (UUCP) name space that defines names of the form host-1!

host-2! host-3! sinha is all example of a source routing name space.

The UUCP style names are called source routing names because the

route through the network is specified at the source computer. For

instance in the example above, the specified route is from host-1 to

host-2 to host-3 sinha. The UUCP style names are relative names

because they must be interpreted relative to the starting point.

10.3 SYSTEM ORIENTED NAMES

System oriented names normally have the

 following characteristic features :

1. They are large integers or bit strings.

2. They are also referred to as unique identifiers because in most

naming systems they are guaranteed to be unique in both space

and time. That is, these names do not change during their lifetime,

and once used, they are ever reused. Therefore, in the naming

system discussed above, a 128 – bit pattern refers either to

nothing or, if it refers to anything, to the same thing at all times.

This is the main reason why unique identifiers are so large.

3. Unlike human oriented names that are variable in length, all

system oriented names of a naming system are of the same size

irrespective of the type or location of the object identified by these

names. This allow the naming of all objects uniformly.

4. Since all the system oriented names of a naming system are of

uniform size and also are normally shorter than human oriented

names, manipulations like hashing, sorting, and so on, can be

easily performed on them. Hence, they are suitable for efficient

handling my machines.

Readers might have observed that name resolution operations

are not likely to be especially cheap. Based on the measurements

made by few researchers in the past, it has been found that in

operating systems that provide a flexible, hierarchical name space,

10.4 NAMECACHES

103

the system overhead involved in name resolution operations is

considerably large. For instance, Leffler et al. [1984] attribute 40% of

the system call overhead in UNIX to file name resolution. Also,

Mogul’s measurements of the UNIX system call frequency indicate

that name mapping operations (open, stat, Istat) constitute over 50%

of the file system calls [Mogul 1986]. Shaltzer at al. [1986] also made

an observation that in a large distributed system a substantial portion

of network traffic is naming related. Hence it is very desirable for a

client to be able to cache the result of a name resolution operation for

a while rather than repeating it every time the value is needed.

Work has been carried out in the past by some researchers

[Sheltzer et al. 1986. Cheriton and Mann 1989] to investigate whether

a distributed name cache is a suitable solution to improve the

performance of name service as well as to reduce the overall system

overhead. The conclusion drawn by these researchers is that a simple

distributed name cache can have a substantial positive effect on

distributed system performance. This is mainly due to the following

characteristics of name service related activities :

1. High degree of locality of name lookup : The property of “locality

of reference” has been observed in program execution, file access,

as well as data base access. Measurements clearly show that a

high degree of locality also exists in the use of pathnames for

accessing objects. Due to this locality feature, a reasonable size

name cache, used for caching recently used naming information,

can provide excellent hit ratios.

2. Slow update of name information database : It has also been

found that naming data does not change very fast, so

inconsistencies are rare. The activity of most users is usually

confined to a small, slowly changing subset of the entire name

information database. Furthermore, most naming data have a high

read to modify ratio. This behavior implies that the cost of

maintaining the consistency of cached data is significantly low.

3. On-use consistency of cached information is possible : An

attractive feature of name service related activity is that it is

possible to find that something does not work if one tries to use

obsolete naming data, so that it can be attended to at the time of

use. That is, name cache consistency can be maintained by

detecting and discarding stale cache entries on use. With onuse

consistency checking, there is no need to invalidate all related

cache entries when a naming data update occurs, et stale data

never cause a name to be mapped to the wrong object.

104

Some issues specific to the design of name caches are

discussed in the next section.

This is the more commonly used method for maintaining name

cache consistency. In this method, no attempt is made to invalidate all

related cache entries when a naming data update occurs. Rather,

when a client uses a stale cached data, it is informed by the naming

system that the data being used is either incorrectly specified or stale.

On receiving a negative reply, necessary steps are taken (Either by

broadcasting or multicasting a request or by using some other

implementation dependent approach) to obtain the updated data,

which is then used to refresh the stale cache entry.

10.5.1 Naming and Security :

An important job of the naming system of several centralized

and distributed operating systems is to control unauthorized access to

both the named objects and the information in the naming database.

Many different security mechanisms have been proposed and are

used by operating systems to control unauthorized access to the

various resources (objects) of the system. Three basic naming related

access control mechanisms are described below.

10.5.2 Object Names as Protection Keys :

In this method, an object’s name acts as a protection key for

the object. A user who knows the name of an object 9i.e. has the key

for the object) can access the object by using its name. Notice that an

object may have several keys in those systems that allow an object to

have multiple names. In this case, any of the keys can be used to

access the object.

In systems using this method, users are not allowed by the

system to define a name for an object that they are not authorized to

access. Obviously, if a user cannot name the object, he or she cannot

operate on it. This scheme is based on the assumption that object

names cannot be forged or stolen. That is, there is no way for a user

to obtain the names of other user’s objects and the names cannot be

guessed easily. However, in practice, since object names are

generally picked to be mnemonic, they can often be guessed easily.

Therefore, the scheme does not guarantee a reliable access control

mechanism. Another limitation of this scheme is that it does not

provide the flexibility of specifying the modes of access control. That

is, a user having a name for an object usually has all types of possible

10.5 ON - USEUP DATE

105

access rights for the object. For instance, providing only read access

to a file object to one user and both read and write accesses to another

user is not possible by this scheme alone.

10.5.3 Capabilities :

This is a simple extension of the above scheme that overcomes

its limitations.

Object identifier Rights information

Fig. 10.1 : The two basic parts of a capability

As shown in Figure 10.1, a capability is a special type of object

identifier that contains additional information redundancy for

protection. It may be considered as an unforgeable ticket that allows

its holders to access the object (identified by its object identifier part)

in one or more permission modes (specified by its access control

information part). Therefore, capabilities are object names having the

following properties :

1. A capability is a system oriented name that uniquely identifies an

object.

2. In addition to identifying an object, it is also used to protect the

object it references by defining operations that may be performed

on the object it identifies.

3. A client that possesses a capability can access the object

identified by it in the modes allowed by it.

4. There are usually several capabilities for the same object. Each

one confers different access rights to its holders. The same

capability held by different holders provides the same access

rights to all of them.

5. All clients that have capabilities to a given object can share this

object. This exact mode of sharing depends on the capability

possessed by each client of the same object.

6. Capabilities are un-forgeable protected objects that are

maintained by the operating system and only indirectly accessed

by the users. Capability based protection relies on the fact that the

capabilities are never allowed to migrate into any address space

directly accessible by a user process (where they could be

modified). If all capabilities are secure, the objects they protect are

also secure against unauthorized access.

106

When a process wants to perform an operation on an operation

on an object, it must send to the name server a message containing

the object’s capability. The name server verifies if the capability

provided by the client allows the type of operation requested by the

client on the relevant object. If not, a “permission denied” message is

returned to the client process. If allowed, the client’s request is

forwarded to the manager of the object. Notice that in the capability

based approach, there is no checking of user identity. If this is

required, some user authentication mechanism must be used.

10.5.4 Associating Protection with Name Resolution Path :

Protection can be associated either with an object or with the

name resolution path of the name used to identify the object. The more

common scheme provides protection on the name resolution path.

1. It eases the task of programming distributed applications by

relieving the programmers from concerns about message data

formats, operating system peculiarities, and specific

synchronization details.

2. It improves cooperation between programmers working in different

languages by allowing both client and servers to be written in any

of the languages supported within the Mach environment. The MIG

compiler automatically takes care of differences in language

syntax, type representations, record field layout, procedure call

semantics, and exception handling semantics.

3. It enhances system standardization by providing a uniform

message level interface between processes.

4. It reduces the cost of reprogramming interfaces in multiple

languages whenever a program interface is changed.

10.5.5 Chorus :

Chorus is microkernel based distributed operating system that

started as a research project in 1979 at INRIA (Institute National de

Recherche en Informatique et Automatique), a government funded

laboratory in France. Until now Chorus has passed through four major

versions (versions 0 – 3). Version 0 (1979 1982) was designed to

model distributed applications as a collection of communicating

processes called actors Version 1 (1982 – 1984) was aimed at porting

the design of Version 0 from a shared memory multiprocessor system

to a distributed memory multiprocessor system. It also had additional

features of structured messages and some support for fault tolerance.

107

The main goal of Version 2 (1984 – 1986) was to add the UNIX source

code compatibility feature to the system so that existing UNIX

programs could be run on Chorus after recompilation. Version 3 in

1987 was made with the main goal of changing the research system

into a commercial product. For this, the first goal was to provide binary

compatibility with UNIX so that UNIX programs could be run on

Chorus without the need to recompile them. Many key concepts from

other distributed operating systems were also included in Version 3.

In particular, a message based interprocess communication

mechanism was borrowed from V-System; some of the concepts of

fast interprocess communication, distributed virtual memory, and

external pagers were borrowed from Mach; and the idea of using

capabilities for global naming and protection was borrowed from

Amoeba. Version 3 also has RPC facility, support for real time

operations, and a multithreading feature. It is available as a

commercial product for a wide range of hardware, such as the Intel

80 86 family, the Motorola 68000 and 88000 families, and the Inmos

Transputer.

10.5.7 Design Goals and Main Features :

Chorus’s design was influenced by the research and design

goals given below.

UNIX Emulation and Enhancements :

One of the main goals of Chorus was to provide a UNIX

compatibility feature so that existing UNIX programs could be run on

Chorus. This was not an initial goal but was later realized to be

important for the commercial success of the system. Therefore,

Version 2 of Chorus was designed to provide UNIX source code

compatibility. To achieve this goal, the original kernel of Chorus was

redesigned and converted to a microkernel by moving as much

functionality as possible from it to user address space. Then several

processes were added in the user address space to do UNIX

emulation. Later, in Version 3, a UNIX emulation subsystem, called

Chorus / MIX (MIX stands for Modular UNIX), was built on top of the

Chorus microkernel to provide binary compatibility with UNIX System

V. The microkernel of Version 2 was further refined by moving out the

part added to it for source code UNIX emulation and placing this part

in the new UNIX emulation subsystem. A 4.3BSD UNIX emulation is

also being currently implemented.

In addition to UNIX emulation, Chorus design also provides

UNIX enhancements to allow users of the UNIX emulation to use

enhanced facilities provided by Chorus from within UNIX processes.

108

Two such enhancements are the use of multiple threads in a single

process and the ability to create a new process at a remote node.

10.5.8 Open System Architecture :

Another important feature of Chorus is its microkernel support,

which provides a base for building new operating system and

enmlating existing ones in a modular way. With this feature, multiple

operating system interfaces, such as UNIX System, V, DSD, UNIX,

OS/2, and MS-DOS, can simultaneously exist on the same machine.

Therefore, it will be possible to run several existing applications that

now are run on different machines on a single machine.

Efficient and Flexible Communication :

The basic communication paradigm used in Chorus is

message passing. Since message passing has a reputation of being

less efficient than shared memory, Chorus’s designers have made

great efforts to optimize the IPC system. The IPC system also

provides a high degree of flexibility in handling different types of

communications. This IPC system has the following features :

1. It provides both asynchronous message passing and request /

reply type interactions.

2. It has RPC facility that provides at most once semantics. It also

has lightweight RPC facility for communication between two kernel

processes.

Exercise:

1) Differentiate between the terms ‘location transparency’ and

location independency’. Which is a more powerful feature?

2) What is a name space? State its hierarchy.

3) Which factors will influence the design decision while designing

object-locating mechanisms for a naming system of a

distributed system?

4) What is a meta-context? Why is it

 needed is a naming system?

5) Explain the working and use of

 consistency control mechanism.

6) Explain one-use consistency control mechanism.





	FUNDAMENTALS
	1.1 WHAT IS A DISTRIBUTED COMPUTING SYSTEM
	1.2 EVOLUTION OF DISTRIBUTED COMPUTING SYSTEM

	1.3 DISTRIBUTED COMPUTING SYSTEM MODELS
	Fig. 1.2 : A distributed computing system based on the minicomputer model
	Fig. 1.3 : A distributed computing system based on the workstation model

	ISSUES IN DESIGNING A DISTRIBUTED OPERATING SYSTEM
	2.1 ISSUES IN DESIGNING A DISTRIBUTED OPERATING SYSTEM
	2.3 PERFORMANCE TRANSPARENCY
	2.4 SCALING TRANSPARENCY
	2.6 FAULT AVOIDANCE
	2.7 FAULT TOLERANCE
	2.8 FAULT DETECTION AND RECOVERY

	REMOTE PROCEDURE CALLS
	3.1 INTRODUCTION TO RPC
	3.2 TRANSPARENCY OF RPC
	3.3 IMPLEMENTING RPC MECHANISM
	Fig. 3.2 : Implementation of RPC mechanism

	3.4 STUB GENERATION
	(a)

	3.6 MARSHALING ARGUMENTS AND RESULTS
	3.7 SERVER MANAGEMENT
	Fig. 3.3 An example of a stateful file server

	REMOTE PROCEDURE CALL
	4.1 COMMUNICATION PROTOCOLS FOR RPCS
	Fig. 4.1 : The request / reply / acknowledge reply (RRA) protocol

	4.2 COMPLICATED RPCs
	4.3 CLIENT – SERVER BINDING
	4.4 EXCEPTION HANDLING
	4.6 SOME SPECIAL TYPES OF RPCs
	4.7 LIGHTWEIGHT RPC
	4.8 OPTIMIZATIONS FOR BETTER PERFORMANCE
	Fig. 4.2 : The early reply approach for providing the reality of concurrent access to multiple servers

	DISTRIBUTED SHARED MEMORY
	5.1 CONSISTENCY MODELS
	5.2 STRICT CONSISTENCY MODEL
	5.3 SEQUENTIAL CONSISTENCY MODEL
	5.4 CAUSAL CONSISTENCY MODEL
	5.7 REPLACEMENT STRATEGY
	5.8 WHICH BLOCK TO REPLACE
	5.9 WHERE TO PLACE A REPLACED BLOCK
	5.11 ADVANTAGES OF DSM
	5.12 SIMPLER ABSTRUCTION
	5.13 BETTER PORTABILITY OF DISTRIBUTED APPLICATION PROGRAMS
	APPLICATIONS
	5.15 FLEXIBLE COMMUNICATION ENVIRONMENT

	SYNCHRONIZATION
	6.1 CLOCK SYNCHRONIZATION
	6.2 HOW COMPUTER CLOCKS ARE IMPLEMENTED
	6.3 MUTUAL EXCLUSION
	6.4 ELECTION ALGORITHMS
	6.5 MUTUAL EXCLUSION

	RESOURCE MANAGEMENT-I
	7.1 DESIRABLE FEATURES OF A GOOD GLOBAL SCHEDULES ALGORITHM
	7.2 TASK ASSIGNMENT APPROACH
	7.3 PROCESS MIGRATION
	Fig 7.1 : Flow of execution of a migrating process

	7.4 DESIRABLE FEATURES OF A GOOD PROCESS MIGRATION
	7.5 LOAD SHARING APPROACH

	RESOURCE MANAGEMENT -II
	8.1 FEATURES OF A GOOD DISTRIBUTED FILE SYSTEM
	8.3 FILE ACCESSING MODELS
	8.4 FILE SHARING SEMANTICS
	Fig. 8.1 : (a) Example of UNIX file sharing semantics; (b) an example explaining why it is difficult to achieve UNIX semantics in a distributed file system even what the shared file is handled by a single server

	DISTRIBUTED FILE SYSTEM (Cont)
	9.1 FILE CACHING SCHEME
	9.2 FAULT TOLERANCE
	9.3 DESIGN PRINCIPLES

	NAMING
	10.1 DESIRABLE FEATURES FOR A GOOD NAMING SYSTEM
	10.2 SOURCE ROUTING NAME
	10.3 SYSTEM ORIENTED NAMES
	Fig. 10.1 : The two basic parts of a capability

